

Enterprise Objects
Framework
Developer’s Guide

K

Apple, NeXT, and the publishers have tried to make the information contained in
this manual as accurate and reliable as possible, but assume no responsibility for
errors or omissions. They disclaim any warranty of any kind, whether express or
implied, as to any matter whatsoever relating to this manual, including without
limitation the merchantability or fitness for any particular purpose. In no event shall
they be liable for any indirect, special, incidental, or consequential damages arising
out of purchase or use of this manual or the information contained herein. NeXT or
Apple will from time to time revise the software described in this manual and
reserves the right to make such changes without obligation to notify the purchaser.

Copyright

 1998 by Apple Computer, Inc., 1 Infinite Loop, Cupertino, CA 95014.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher or
copyright owner. Printed in the United States of America. Published simultaneously
in Canada.

NeXT, the NeXT logo, OPENSTEP, Enterprise Objects, Enterprise Objects
Framework, Objective-C, WEBSCRIPT, and WEBOBJECTS are trademarks of
NeXT Software, Inc. Apple is a trademark of Apple Computer, Inc., registered in the
United States and other countries. PostScript is a registered trademark of Adobe
Systems, Incorporated. Windows NT is a trademark of Microsoft Corporation. UNIX
is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited. ORACLE is a registered trademark
of Oracle Corporation, Inc. SYBASE is a registered trademark of Sybase, Inc. All
other trademarks mentioned belong to their respective owners.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 [or, if
applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86].

This manual describes EOF 3.0.

Writing: Kelly Toshach
With help from: Bruce Arthur, Nancy Craighill, Craig Federighi, Patrick Gates,
Stan Jirman, Kenny Leung, Mai Nguyen, Eric Noyau, Steve Miner, and Greg Wilson
Design and Illustration: Karin Stroud
Production: Gerri Gray

Contents

Table of Contents
Introduction 11

About This Book 14

Part I Enterprise Objects Frameworks Essentials

What Is Enterprise Objects Framework? 19

The Enterprise Objects Framework Difference 21
Where Does Business Logic Go? 22
What Doesn’t Go in an Enterprise Object 23

From Database to Objects 25
Uniquing 27
Resolution of Relationships and Faulting 29

From Objects to Interface 31

From Objects to Database 31
Validation 31
Referential Integrity Enforcement 32
Automatic Primary and Foreign Key Generation 32
Transaction Management 33
Locking 33

Ingredients of an Enterprise Objects Framework Application 34

Enterprise Objects Framework Layers 36
A Command-Line Program 37
An Application Kit Client/Server Application 37
An HTML WebObjects Application 39

Enterprise Objects 42

Enterprise Objects Framework Viewed Through Its Classes 43

Classes in a Command-Line Program 45
The Access Layer 46
The Control Layer 51

Classes in an Application Kit Client/Server Application 52
User Interface Objects 53
The Interface Layer 54
Access and Control Layers 54

Classes in an HTML WebObjects Application 55
5

6

Classes in a Web Application with a Java Client 57
The Distribution Layer 59
Client-Side APIs 59

Framework Dependencies 60

Part II Enterprise Object Design

Designing Enterprise Objects 65

Designing Your Schema 67

Defining the Model 68
EOGenericRecord or Custom Class? 68
Which Attributes Should Be Class Properties? 69
What Data Types Should Your Properties Be? 70
How Should Your Enterprise Object Manage Relationships with Other Objects? 72
What about Inheritance? 75

Implementing an Enterprise Object 75
Generating Source Files 76
Superclass 77
Instance Variables 77
Writing Accessor Methods 78
Writing Derived Methods 86
Performing Validation 87
Creating and Inserting Objects 93
Setting Defaults for New Enterprise Objects 98
Writing Business Logic 100

Gotchas 101
Constructor for Creating Enterprise Objects 101
Numeric Values and NULL 102
Cautions in Implementing Accessor Methods 102
Don’t Override equals 103

Advanced Enterprise Object Modeling 105

Modeling Complex Attributes 107
RTF Text 108
Images 110
Custom Data Types 111

Modeling Relationships 114
Modeling Optional To-One Relationships 114
Modeling Many-To-Many Relationships 122

Modeling Inheritance 124
Types of Inheritance 125
Vertical Mapping 127
Horizontal Mapping 129
Single Table Mapping 131
Data Access Patterns for Inheritance 133
Fetching and Inheritance 133
Delegation Hooks for Optimizing Inheritance 134
Java Limitation With Ambiguous To-One Relationships 135

Designing Database-Savvy Enterprise Objects 135

Part III Application Design

Application Configurations 141

Graphical User Interface Applications 143
Loading a User Interface 145
Unarchiving an Editing Context 147
Unarchiving a Database Data Source 147
Sharing Editing Contexts and Coordinators 150
Database Context Rendezvousing 151
Setting Up Channels 152

Non-Graphical User Interface Applications 153
Creating an Editing Context 154
Inside EOObjectStoreCoordinator 156
Inside EODatabaseContext 157
Substituting a Custom EOCooperatingObjectStore 158

Editing Context Configurations 159
Using One Editing Context for Multiple Nibs 160
Using Nested Editing Contexts 161

Object Store Coordinator Configurations 165
Setting Up Multiple Coordinators Programmatically 167
Setting Up Multiple Coordinators Using Nibs 167

Accessing Multiple Databases 168
Getting By Without Two-Phase Commit 169
Preventing Database Context Rendezvousing 169
7

8

Connecting to a Database 173

When Database Connections Are Opened and Closed 175

Logging into a Database 176
Storing the Connection Information in a Model File 177
Running the Adaptor’s Login Panel 177
Setting the Connection Dictionary Programmatically 179

Limiting the Number of Database Connections 180
Closing Database Connections 182

Using Multiple EODatabaseChannels 184

Character Encodings 185
Choosing an Encoding 185
Setting an Adaptor’s Character Encoding 186
Setting the Database Character Encoding 186

Behind the Scenes 187

Fetching Objects 189
EODisplayGroup Receives a fetch Message 191
Inside EODatabaseContext 192
Inside EODatabaseChannel 195
Flow of Data During a Fetch 198
Uniquing, Snapshots, and Faults 201

How Changes are Distributed and Applied 207
How an EOEditingContext Manages Changes to Its Objects 210

Saving Changes 212
Locking and Update Strategies 217

Transactions 219
Transactions and Optimistic Locking 219
Transactions and Pessimistic Locking 220
Transactions and On-Demand Locking 220

Answers to Common Design Questions 221

How Can I Improve Performance? 223
Controlling the Number of Objects Fetched 224
Faulting 224
Caching an Entity’s Objects 226
Creating an EOModel for Optimal Performance 227
Updating the User Interface Display 228

How Do I Generate Primary Keys? 229
Defining a Primary Key 230
Generating Primary Key Values 231
Why Can’t I Use Identity Columns? 236
Why is EOF Generating Primary Key Values for Number Objects Set to Zero? 237
Summary 238

How Do I Use My Database Server’s Integrity-Checking Features? 238
Defaults 239
Rules That Validate Values 240
Constraints for Enforcing Relational Integrity Rules 241

How Do I Invoke a Stored Procedure? 242
Invoking a Stored Procedure Automatically 242
Invoking a Stored Procedure Explicitly 245

How Do I Order Database Operations? 248

How Are Enterprise Objects Cleaned Up? 250
Who Owns an Enterprise Object? 251
How Does an Enterprise Object Get Deallocated? 251
How Are an Object’s Snapshots Deallocated? 252
What Happens If You Have Retain Cycles? 253

Should I Make Foreign Key Attributes Class Properties? 254

How Do I Share Models Across Applications? 255

Entity-Relationship Modeling 257

Modeling Objects 259

Entities and Attributes 260
Names and the Data Dictionary 262
Attribute Data 262
The Primary Key 264

Relationships 265
Relationship Directionality 266
Naming Relationships 266
Relationship Keys 267
Relationship Cardinality 271
Bidirectional Relationships 272
Reflexive Relationships 276
Flattened Attributes 277

Index 281
9

Introduction

Enterprise Objects Framework brings the benefits of object-oriented
programming to database application development. You can use the
Framework to build feature-rich, database applications with reusable
software components that tightly couple business information with the
business processes managing that information.

One of the most significant problems developers face when using
object-oriented programming languages with SQL databases is the
difficulty of matching static, two-dimensional data structures with
the extensive flexibility afforded by objects. The features of
object-oriented programming—such as encapsulation and
polymorphism—and their benefits—like fewer lines of code and
greater code reusability—are often negated by the programming
restrictions that come with accessing SQL databases within an
object-oriented application.

Enterprise Objects Framework solves this problem by providing
tools for defining an object model and mapping it to a data model.
This allows you to create objects that encapsulate both data and the
methods for operating on that data, while taking advantage of the data
access services provided by the Framework that make it possible for
these objects to persist in a relational database.

The flexible, three-tier architecture provided by the Framework
allows you to build robust, scalable, client/server applications. Objects
at each of the three tiers (user interface, enterprise objects, and data
store) can be deployed to take advantage of network resources.
For example, data might be stored in a relational database running
on a fault-tolerant database server with gigabytes of disk storage, while
enterprise objects run on high-end compute servers. Partitioning the
application to make best use of available resources allows complex
applications to achieve maximum performance.

The components of Enterprise Objects Framework fully embrace the
three-tier architecture, which means that portions of the Framework
can be used selectively to meet specific application requirements.
For example, the components that provide users with the ability
to interactively manipulate enterprise objects can be used by a
non-database application to handle user interface refresh and undo.
You can use a custom data store (such as a flat-file system) in place
of a relational database to store data for enterprise objects. Or you can
13

Introduction

make use of the database adaptors separate from the rest of the
Framework components to provide direct access to relational databases
for your applications.

Enterprise Objects Framework offers these additional benefits:

• Flexibility. An enterprise object isn’t constrained by the physical
location of data. Its mapping can extend across tables, and its
data isn’t confined to the object’s mapping to a physical database.
Further, the mapping of an enterprise object to the database can be
dynamically controlled at run time.

• Modularity. Depending on the needs of your application, you can
create simple applications that require little or no code, program
selected components while accepting the default behavior of other
components, or use selected components independent of the rest
of the Framework.

• Extensibility. Enterprise Objects Framework’s classes are public and
extensible. For example, you can provide your own data source, or
add support for a new user interface object.

About This Book

This book describes concepts that you’ll need to know when writing a
Enterprise Objects Framework application. To help you find what you
are looking for, this book is organized into three parts:

• Part 1, “Enterprise Objects Frameworks Essentials” on page 17,
provides an overview of how Enterprise Objects Framework works
and the different types of applications you can build with it.
The first chapter, “What Is Enterprise Objects Framework?” on
page 19, describes what Enterprise Objects Framework is, how
it’s different from other products, and what features it offers.
The second chapter, “Enterprise Objects Framework Viewed
Through Its Classes” on page 43, provides a description of the
classes used in Enterprise Objects Framework applications and
how they fit into different types of applications.
14

About This Book

• Part 2, “Enterprise Object Design” on page 63, describes how
to implement business logic for your application. With Enterprise
Objects Framework, you put business logic in business objects,
called enterprise objects. The two chapters in Part 2, “Designing
Enterprise Objects” on page 65 and “Advanced Enterprise Object
Modeling” on page 105, describe the tasks you perform in defining
the enterprise objects for your application.

• Part 3, “Application Design” on page 139, describes how to
implement application-level logic for your application. Enterprise
Objects Framework provides a basic structure for all applications
that use it. The chapters in this section— “Application
Configurations” on page 141, “Connecting to a Database” on
page 173, “Behind the Scenes” on page 187, and “Answers to
Common Design Questions” on page 221—describe that structure,
how it’s established at runtime, and how to intervene in its default
behaviors.

There are no prerequisites for learning Enterprise Objects Framework;
however, it does help if you understand something about relational
databases and Entity-Relationship modeling. If you aren’t familiar with
these topics, read the Appendix, “Entity-Relationship Modeling” on
page 257. While Enterprise Objects Framework largely encapsulates
the programmer from having to know about relational databases, you
still need to understand Entity-Relationship Modeling to map
your enterprise objects into a relational database for storage.
Entity-Relationship Modeling terminology is used by the Enterprise
Objects Framework classes and documentation to describe this mapping.
15

Part I

Enterprise Objects
Frameworks Essentials

What Is Enterprise Objects
Framework?

Chapter 1

Enterprise Objects Framework is a set of tools and resources that
help you create applications that work with the most popular relational
databases—or with your own custom data store. These tools don’t help
you build a complete database system from the ground up—the tasks
of data storage and retrieval are left to a database server supplied by
a third party. Rather, Enterprise Objects Framework lets you design
object-oriented database applications that are easy to build and maintain
and that draw upon standard user interface features.

This chapter describes how Enterprise Objects Framework is different
from other database access products, the features it offers, and how you
can use it. The chapter is divided into the following sections:

• “The Enterprise Objects Framework Difference” on page 21

• “From Database to Objects” on page 25

• “From Objects to Interface” on page 31

• “From Objects to Database” on page 31

• “Ingredients of an Enterprise Objects Framework Application”
on page 34

• “Enterprise Objects Framework Layers” on page 36

• “Enterprise Objects” on page 42

The Enterprise Objects Framework Difference

Today’s business applications must embody complex rules of the
business, access heterogeneous corporate data in database systems
from multiple vendors, and offer different front ends to meet the needs
of users in all different parts of the business. This is a tall order to fill,
but Enterprise Objects Framework meets all these needs. It provides
database independence, transparently maps custom business objects
to database tables, and binds business objects to user interfaces.
21

Chapter 1

What Is Enterprise Objects Framework?

Where Does Business Logic Go?
The biggest difference between Enterprise Objects Framework and
other solutions is where you put business logic. One approach is to
implement business rules in the user interface, as you do with 4GL tools.
Problems with this approach include:

• It offers limited reuse. You have to code your business logic into
each application that accesses your database. In fact, within an
application, you have to code your business logic into each screen.
Consequently, you wind up duplicating your code.

• It’s not maintainable. Since you have to duplicate your business
logic, even small modifications to your rules are difficult to
implement. Finding and fixing every affected screen in every
affected application is slow and error prone. Modifications to your
database schema are equally problematic.

• Different user interfaces require different implementations. For example,
if you have a client/server application that you want to put on the
web, you have to rewrite the application and maintain both
versions.

• It provides poor data integrity. You have to rely on all application
developers to implement the business rules correctly. If any screen
of any application has an error, the data in your database can be
corrupted, impacting all applications.

• It doesn’t scale well. To improve your application’s performance, you
have to provide your users with faster systems. Contrast this with a
solution in which you can move some computation-intensive
processing to fast server machines.

Another approach is to implement your business rules in the database—
with stored procedures, rules, constraints, and triggers, for example.
This approach also has problems:

• It offers limited interactivity. To provide immediate feedback to a
user, you have to make a round trip to the database every time the
user performs an action, which can be very slow and inefficient.
On the other hand, you can batch up changes, but then the user
doesn’t receive immediate feedback.
22

The Enterprise Objects Framework Difference

• No back-end portability. Database vendors all have different ways to
implement logic. If you have to support more than one database,
you’ll have to implement the logic multiple times, resulting in
more maintenance problems.

• SQL is a poor development language.

A third approach—the one that Enterprise Objects Framework takes—is
to put business rules in business objects, called enterprise objects. By
applying good object-oriented design principles, this approach provides
the advantages of encapsulation, reuse, and a more natural model of the
real world. For example, suppose you’re writing an application for
managing a video rental store. The business logic for such an application
might include the rules:

• A late fee is generated automatically when a rental becomes
overdue.

• A customer can’t rent more videos if they have any overdue rentals.
• The total replacement value of a customer’s rentals can’t exceed

the amount of the customer’s deposit.

With Enterprise Objects Framework, you would implement these rules
in enterprise objects such as Customer, VideoTape, Rental, and Fee.

What Doesn’t Go in an Enterprise Object
Deciding what code to leave out of your business objects is just as
important as deciding what code you leave in. To maximize the
reusability and extensibility of your objects, they shouldn’t embed
knowledge of the user interface or database alongside the business logic.
For example, if you embed knowledge of your user interface, you can’t
reuse the objects because each application’s user interface is different;
and if you embed knowledge of your database, you have to update your
objects every time you modify the database.

If not in the business objects, then where does this knowledge go?
It’s handled by Enterprise Objects Framework as shown in Figure 1.
23

Chapter 1

What Is Enterprise Objects Framework?

Figure 1. The Enterprise Objects Framework Approach

The Framework provides a database-to-objects mapping so your
objects are encapsulated from the database, and it provides an
objects-to-interface mapping so they are encapsulated from the user
interface. This approach enables you to create libraries of enterprise
objects that can be used in as many applications as you need, with any
user interface, and with any database server. You’re able to concentrate
on coding the logic of your business while the Framework takes care
of the rest.

Relational
Database
24

From Database to Objects

From Database to Objects

Enterprise Objects Framework’s database-to-objects mapping sets up a
correspondence between database tables and enterprise objects classes so
that database rows map to instances of the appropriate class as shown in
Figure 2.

Figure 2. Mapping Between an Enterprise Object Class and a Single Table

The mapping is flexible. For example:

• You can map an enterprise object to a single table, a subset of a
table, or to more than one table. For instance, a Person object can
get its first and last names from a PERSON table but get its street
address, city, state and zip code from an ADDRESS table.

• Generally an enterprise object instance variable maps to a single
column, but the column-to-instance variable correspondence is
similarly flexible. You can map an instance variable to a derived
column, such as “price * discount” or “salary * 12”.

• You can map an enterprise object inheritance hierarchy to one or
more database tables.

Talent

1028 Federighi Craig

1132 Feldman Corey

TALENT_ID LAST_NAME FIRST_NAME
TALENT

lastName "Federighi"
firstName "Craig"
25

Chapter 1

What Is Enterprise Objects Framework?

In addition to mapping tables to enterprise object classes and database
columns to instance variables, the Framework maps database primary and
foreign keys to relationships between objects. The Framework defines
two types of relationships—to-ones and to-manys—which are both
illustrated in Figure 3. The relationship a MovieRole has to its Movie is a
to-one relationship, while the relationship a Movie has to its MovieRoles
is a to-many.

Figure 3. Mapping Relationships

movieRoles

movie

movie

NSMutableArray

MovieRole

MovieRoleMovie

1028 Ripley 501 501 Alien
1132 Ash 501 703 Toy Story

TALENT_ID MOVIE_ROLE MOVIE_ID MOVIE_ID TITLE

MOVIE_ROLE MOVIE
26

From Database to Objects

For more information on database-to-objects mappings, see the chapter
“Designing Enterprise Objects” on page 65, and to learn how to define
this mapping with the EOModeler application, see the book Enterprise
Objects Framework Tools and Techniques.

Uniquing
In marrying relational databases to object-oriented programming, one of
the key requirements is that a row in the database be associated with only
one enterprise object in a given context in your application. Enterprise
Objects Framework maintains the mapping of each enterprise object to
its corresponding database row, and uses this information to ensure that
your object graph does not have two (possibly inconsistent) objects for
the same database row. Uniquing of enterprise objects, as this process is
called, limits memory usage and allows you to know with confidence that
the object you’re interacting with represents the true state of its
associated row as it was last fetched into the object graph.

Without uniquing, you’d get a new enterprise object every time you fetch
its corresponding row, whether explicitly or through resolution of
relationships. This is illustrated in Figure 4.
27

Chapter 1

What Is Enterprise Objects Framework?

Figure 4. Uniquing of Enterprise Objects

Without Uniquing

With Uniquing

manager

manager

manager

Kai KaiKai

Cary John

This shows the enterprise objects
that would exist after fetching
three employee objects without
uniquing. Kai is Cary’s and John’s
manager. On fetching an object
for Cary, an object representing
Kai is created to resolve the
manager relationship. If you then
fetch an object for Kai, a separate
object is created. Fetching an
object for John then causes yet
another object representing Kai
to be created. Kai’s row in the
database can be altered between
any of these individual fetches,
resulting in objects representing
the same row, but with different data.

Kai

Cary John

Using uniquing results in only
one object ever being created for
Kai. In this case, even though
Kai’s row can be changed, your
application has a single view of
Kai’s data. The data may not reflect
what’s in the database if another
user changes it, but there’s no
ambiguity within your application.
28

From Database to Objects

Resolution of Relationships and Faulting
When the Framework fetches an object, it creates objects representing
the destinations of the fetched object’s relationships. For example, if you
fetch an employee object, you can ask for its manager and immediately
receive an object; you don’t have to get the manager’s employee ID from
the object you just fetched and fetch the manager yourself.

The Framework doesn’t immediately fetch data for the destination
objects of relationships, however. Fetching is fairly expensive, and
further, if the Framework fetched objects related to the one explicitly
asked for, it would also have to fetch the objects related to those, and so
on, until all of the interrelated rows in the database had been retrieved.
To avoid this waste of time and resources, the destination objects created
are stand-ins, called faults, that fetch their data the first time they’re
accessed. Figure 5 illustrates this process.

The framework allows you to tune relationship resolution by prefetching
relationships and batch faulting. For more information on these features,
see the chapter “Answers to Common Design Questions” on page 221.
For more information on the general faulting mechanism, see the chapter
“Behind the Scenes” on page 187.
29

Chapter 1

What Is Enterprise Objects Framework?

Figure 5. Resolution of a Fault

manager

Veasey

MacAskill Jane 507 Nov-19-1992

Veasey Kai 512 Apr-05-1988

Last Name First Name ProjID ProjDate

MacAskill Jane 507 Nov-19-1992

Veasey Kai 512 Apr-05-1988

Last Name First Name ProjID ProjDate

lastNam
e

MacAskill Jane 507 Nov-19-1992

Veasey Kai 512 Apr-05-1988

Last Name First Name ProjID ProjDate

lastName

The Employee Object
“Jane MacAskill” is fetched from
the database. Instead of fetching
the data for Jane’s manager
(Kai Veasey) right away, the
Framework creates a fault
containing the value of the
foreign key for Jane’s manager
relationship. The graphic for
the fault has an empty center
with a key in it, indicating that it
contains no real values yet.
The bottom half of the object
shows the messages the fault
can respond to without first
having to fetch its data.

Employee

The fault receives a message
it can’t cover for (lastName).

The fault fetches its data from
the database and invokes
its lastName method.

The string “Veasey” is returned.
30

From Objects to Interface

From Objects to Interface

The objects-to-interface mapping takes care of automatically
synchronizing the user interface with your enterprise objects. If a
user changes a value in the user interface, the Framework updates
the corresponding enterprise objects. Similarly, if an enterprise object
is changed programmatically, the Framework automatically updates the
user interface.

From Objects to Database

After your program has accumulated changes to enterprise objects, it
needs to push those changes back to the database. Enterprise Objects
Framework manages this process, too, analyzing the objects for changes,
generating corresponding database operations, and executing those
operations to synchronize the database with in-memory enterprise
objects. The Framework has mechanisms for ensuring that the integrity
of your data is maintained between your application and the database:

• Validation
• Referential integrity enforcement
• Automatic primary and foreign key generation
• Transaction management
• Locking

Each of these is described in the following sections.

Validation
A good part of your application’s business logic is usually validation—for
example, verifying that customers don’t exceed their credit limits, that
return dates don’t come before their corresponding check out dates, and
so on. In your enterprise object classes, you implement methods that
check for invalid data, and the framework automatically invokes them
before saving anything to the database.
31

Chapter 1

What Is Enterprise Objects Framework?

Referential Integrity Enforcement
Enterprise Objects Framework allows you to specify rules governing
the relationships between objects. You can specify whether a to-one
relationship is optional or mandatory. For example, you can require that
all departments have a location (mandatory), but not require that every
employee have a manager (optional).

You can also specify delete rules for relationships. For example, when you
delete a department object, you can specify that:

• All the employees in that department are also deleted (a cascading
delete).

• All the employees in that department are updated to have no
department (nullify).

• The department deletion is rejected if it has any employees (deny).

For more information on Framework’s referential integrity enforcement,
see the chapter “Designing Enterprise Objects” on page 65. To learn
how to define these rules in the EOModeler application, see the book
Enterprise Objects Framework Tools and Techniques.

Automatic Primary and Foreign Key Generation
With Enterprise Objects Framework, you don’t have to maintain
database artifacts such as database primary and foreign key values
into your application. Database primary and foreign keys aren’t usually
meaningful parts of a business model; rather, they’re attributes created
in a relational database to express relationships between entities.
For example, the primary key (MOVIE_ID) for a movie doesn’t
have any meaning to users. Users identify movies by their titles.

Enterprise Objects Framework keeps track of primary and foreign
key data for you. You don’t have to represent that information in your
enterprise objects, and you don’t have to worry about generating and
propagating key values.

For information on eliminating database artifacts from your object
model, see the chapter “Designing Enterprise Objects” on page 65.
For information on how the Framework generates primary key values,
see the chapter “Answers to Common Design Questions” on page 221.
32

From Objects to Database

Transaction Management
For the most part, Enterprise Objects Framework handles transactions
for you. You don’t have to worry about beginning, committing, or rolling
back transactions unless you want to fine-tune transaction management
behavior. The Framework uses the native transaction management
features of your database to group database operations that correspond
to the changes that have been made to enterprise objects in memory.
For more information, see the chapter “Behind the Scenes” on page 187.

Additionally, the Framework provides a separate in-memory transaction
management feature. You can create nested contexts in which a child
context’s changes are folded into the parent context only upon successful
completion of an in-memory operation. For more information on nested
contexts, see the chapter “Application Configurations” on page 141.

Locking
The Framework offers three types of locking:

• Pessimistic. With this strategy, Enterprise Objects Framework uses
your database server’s native locking mechanism to lock rows as
they’re fetched into your application. If you try to fetch an object
that someone else has already fetched, the operation will fail
because the corresponding database row is locked. This approach
prevents update conflicts by never allowing two users to look at the
same object at the same time.

• Optimistic. With this strategy, update conflicts aren’t detected until
you try to save an object’s changes to the database. At this point, the
Framework checks the database row to see if it’s changed since
your object was fetched. If the row has been changed, it aborts the
save operation.

Enterprise Objects Framework determines that a database row
has changed since its corresponding object was fetched using a
technique called snapshotting. When the Framework fetches an
object from the database, it records a snapshot of the state of the
corresponding database row. When changes to an object are saved
33

Chapter 1

What Is Enterprise Objects Framework?

to the database, the snapshot is compared with the corresponding
database row to ensure that the row data hasn’t changed since the
object was last fetched. For more information on snapshots,
see the EODatabaseContext class specification in the
Enterprise Objects Framework Reference.

• On-Demand. This approach is a mixture of the pessimistic and
optimistic strategies. With on-demand locking, you lock an object
after you fetch it but before you attempt to modify it. When you try
to get a lock on the object, it can fail for one of two reasons: the
corresponding database row has changed since you fetched the
object (optimistic locking), or because someone else already has
a lock on the row (pessimistic locking).

For more information on Enterprise Objects Framework’s locking
strategies, see the chapter “Behind the Scenes” on page 187.

Ingredients of an Enterprise Objects Framework Application

Enterprise Objects Framework can be used to create many different
kinds of applications:

• Command-line programs without a graphical user interface

• Application Kit client/server desktop applications where all the
logic is in a client

• HTML WebObjects applications where all the logic is in the
application server

• WebObjects applications with interactive Java clients where the
logic is distributed between an application server and its clients

Regardless of the type of application you’re building (and assuming your
data store is a relational database), creating an Enterprise Objects
Framework application usually involves the following components
(shown in Figure 6).
34

Ingredients of an Enterprise Objects Framework Application

• A user interface. The type of interface you want—whether a
graphical user interface based on Apple’s Application Kit for
a desktop application, an HTML web interface based on
Apple’s WebObjects framework, or an interactive Java client
(using Sun’s JDK user interface objects) for a web application—
determines the tools you use to create the user interface. For
Application Kit applications and Java web clients, you use Interface
Builder. For HTML web applications, you use WebObjects
Builder.

• A model. A model defines the mapping between your enterprise
objects and the data stored in your database. An enterprise
object class typically corresponds to a table in a database, and an
enterprise object instance corresponds to a single row or record in
the corresponding table. You define and store this correspondence
in models that you build graphically with the EOModeler
application.

• Enterprise Objects. These are your business objects, in custom code
that you provide. Enterprise objects couple data from the database
with the business logic required to operate on that data.

• Enterprise Objects Framework’s classes and interfaces. The classes
and interfaces (or classes and protocols if you’re using Objective-C)
let you programmatically manipulate data as it passes between the
database server, your enterprise objects, and the user interface.
Although simple applications can be created entirely in one of
the builder tools, sophisticated applications require using some
of the Enterprise Objects Framework classes in your own code.

• A database server and an adaptor for that server. An adaptor is a
mechanism that connects your application to a particular server.
For each type of server you use, you need a separate adaptor.
Enterprise Objects Framework provides adaptors for Oracle,
Sybase, Informix, and ODBC-compliant servers. It also provides a
sample adaptor for a flat-file data store and an adaptor for OpenBase
Lite—a database that ships with Enterprise Objects Framework as
an unsupported demo.
35

Chapter 1

What Is Enterprise Objects Framework?

What varies between different types of applications is the parts of the
Framework that you use and how they interact with your application’s
user interface.

Figure 6. The Ingredients of an Enterprise Objects Framework Application

Enterprise Objects Framework Layers

Conceptually, Enterprise Objects Framework is divided into four layers:
the access layer, the control layer, the interface layer, and the distribution
layer. Correspondingly, it partitions its classes and interfaces into four
frameworks: EOAccess, EOControl, EOInterface, and EODistribution.
The names of the layers and frameworks are used interchangeably
throughout the Framework documentation.

This section introduces the Framework layers by demonstrating the roles
they play in the four most basic types of Enterprise Objects Framework
applications.

Custom Code

Adaptor

AppKit

Relational
Database

WebObjects Sun's JDK

Enterprise
Objects

Framework

Model
36

Enterprise Objects Framework Layers

A Command-Line Program
The simplest type of application is a command-line program
(any program that doesn’t have a graphical user interface). As shown
in Figure 7, a command line program uses only the most fundamental
layers of the Framework: the access layer and the control layer.

Figure 7. A Command-Line Program

Using a model, the access layer fetches rows of data from a database,
creates enterprise objects from the fetched data, and registers the
enterprise objects with the control layer. The control layer manages
the graph of enterprise objects in memory, tracking changes to them
and directing the access layer to commit those changes to the database
when the program is ready to save.

An Application Kit Client/Server Application
 The second type of application is a traditional client/server application
in which desktop clients access a database running on a server. To the
simple architecture of a command-line program, a desktop client adds
a graphical user interface and two additional frameworks to support that
interface (Figure 8).

EOControl

EOAccess

Relational
Database

Command Line Tool
37

Chapter 1 What Is Enterprise Objects Framework?
Figure 8. An Application Kit Client/Server Application

The Application Kit is a framework that provides the structure and
user-interface controls (buttons, text fields, and tables, for example)
for applications with graphical user interfaces. The Application Kit
isn’t a part of Enterprise Objects Framework; rather it’s a fundamental
component of the Yellow Box development environment. For more
information on the Application Kit, see the “Introduction to the
Application Kit” in the Application Kit Reference.

On the other hand, interface layer is a part of Enterprise Objects
Framework. It maps data between the application’s user interface
and the control layer’s graph of enterprise objects.

AppKit

EOInterface

EOControl

EOAccess

Relational
Database

Desktop Client
38

Enterprise Objects Framework Layers
An HTML WebObjects Application
 The third type of application is an HTML web application. Like the
Application Kit client/server application, the HTML web application
uses the access and control layers to fetch and manage enterprise objects.
However, the HTML web application replaces the Application Kit-based
user interface with a standard, HTML web page (Figure 9).

Figure 9. An HTML WebObjects Application

WebObjects Application

EOControl

EOAccess

Relational
Database

Web Browser

Application Server
39

Chapter 1 What Is Enterprise Objects Framework?
The WebObjects framework manages the user interface in an HTML web
application. It combines the functionality of the Application Kit and
EOInterface to provide an HTML-based presentation layer. Like the
Application Kit, the WebObjects framework provides structure and
user-interface elements. It also provides its own mechanism for
transporting data between the control layer’s graph of enterprise objects
and a web page. WebObjects framework, like the Application Kit, is not
a part of Enterprise Objects Framework. Rather, it’s the fundamental
component of the WebObjects product. For more information on the
WebObjects framework, see the WebObjects Developer’s Guide.

The Application Kit client/server application and the HTML web
application are both client/server applications; but in the former, the
client is fat, and in the latter, the client is thin. Put another way, the
Application Kit application puts all (or most) of the application and
business logic in the client, whereas the HTML web application puts all
(or most) of the application and business logic in the application server.

In contrast, a web application with Java client distributes the logic more
evenly across the client and the application server (Figure 10). This last
type of application introduces the final Enterprise Objects Framework
layer: the distribution layer keeps copies of enterprise objects in the
application server synchronized with those in the client.
40

Enterprise Objects Framework Layers
Figure 10. A Web Application with a Java Client

The kinds of applications you can build with Enterprise Objects
Framework aren’t limited to these four types; the types in this chapter
are simply the most basic. They can be mixed and matched to create
numerous other configurations. For example, you could build a

Sun’s JDK

EOInterface

Application Server

EOJavaClient

JavaClient

EOControl

EODistribution

EOControl

EOAccess

Relational
Database
41

Chapter 1 What Is Enterprise Objects Framework?
command-line application to act as a server for an Application Kit-based
desktop client, distributing your business logic across the client and
server the way you can with a web application and a Java client.

Enterprise Objects

So far, you’ve seen the components of an application that Enterprise
Objects Framework provides. The component of an application that
the Framework doesn’t provide—the part that you write—is your
application’s business logic. Typically you code the bulk of this business
logic in enterprise object classes.

An enterprise object is like any other object in that it couples data with
the methods for operating on that data. However, an enterprise object
class has certain characteristics that distinguish it from other classes:

• It has properties that map to stored or persistent data; an enterprise
object instance typically corresponds to a single row or record in a
database.

• It knows how to interact with other parts of the Framework to give
and receive values for its properties.

Although you write the business logic, the Framework specifies how it
gets invoked. In addition to providing classes that manage a graph of
enterprise objects in memory, the control layer defines an API to which
enterprise objects must conform. So you can concentrate on the parts of
your enterprise object classes that are specific to your application, it also
provides default implementations of most of this API.

To find out more about writing enterprise object classes, see the chapter
“Designing Enterprise Objects” on page 65.
42

Enterprise Objects Framework
Viewed Through Its Classes

Chapter 2

Classes in a Command-Line Program
As you learned in the previous chapter, Enterprise Objects Framework is
divided into layers. This chapter takes a closer look at the responsibilities
of each layer. It does so by describing the classes in each layer and
demonstrating the roles they play in the four most basic types of
Enterprise Objects Framework applications:

• Command-line programs without a graphical user interface

• Application Kit client/server desktop applications where all
the logic is in a client

• HTML WebObjects applications where all the logic is in
the application server

• WebObjects applications with interactive Java clients where the
logic is distributed between an application server and its clients

Classes in a Command-Line Program

A command-line program—one that doesn’t have a graphical user
interface—uses the most fundamental Enterprise Objects Framework
classes (Figure 11). The same classes are used in all the most typical types
of applications, but other types add other classes for interacting with the
user interface.
45

Chapter 2 Enterprise Objects Framework Viewed Through Its Classes
Figure 11. Framework classes in a Command-Line Program

The next sections introduce these classes, following the flow of data
from the database, through the access layer, to the control layer.

The Access Layer
The access layer is the part of the Framework that interacts with the
database. Its role in a command-line program is much the same as it is in
all other types: it fetches rows of data from a database, creates enterprise
objects from the fetched data, and registers the enterprise objects with
the control layer—the next layer up in an application’s architecture.
Later, when the control layer has changes to save, it directs the access
layer to write those changes to the database.

EOControl

EOAccess

EOObjectStore
Coordinator

EODatabase
Context

EOEditing
Context

EODatabase EODatabase
Channel

EOModel

EOAdaptor EOAdaptor
Context

EOAdaptor
Channel

Relational
Database
46

Classes in a Command-Line Program
The access layer is divided into three functional groupings:

• The adaptor level that interacts with a database in terms of server-
specific client libraries, providing server-independent database
access to the rest of the Framework.

• The database level that creates full-fledged enterprise objects
from database rows.

• Modeling classes that furnish database login information and
a database-to-objects mapping.

Figure 12 shows how each grouping fits into the architecture of an
application. The bottom row of classes (EOAdaptor, EOAdaptorContext,
and EOAdaptorChannel) constitutes the adaptor level. The top row
of classes in (EODatabase, EODatabaseContext, and
EODatabaseChannel) constitutes the database level.

EOModel is one of the modeling classes. An EOModel object represents
the whole database-to-objects mapping in entity-relationship terms,
while other modeling classes correspond to components of that mapping.
The adaptor level, database level, and modeling classes are described in
greater detail in the following sections.

Figure 12. The Access Layer

The Adaptor Level
The adaptor level defines a server-independent interface for working
with relational database systems. Figure 13 shows the adaptor level
classes and the behaviors associated with each class.

EOModel

EOModel
Group

EOAdaptor EOAdaptor
Context

EOAdaptor
Channel

EODatabase
Context

EODatabase EODatabase
Channel
47

Chapter 2 Enterprise Objects Framework Viewed Through Its Classes
Figure 13. Adaptor Level

Server-specific subclasses encapsulate the behavior of database servers,
thereby offering a uniform way of interacting with servers while still
allowing applications to exploit their unique features. For example, the
Framework provides the classes OracleAdaptor, OracleAdaptorContext,
and OracleAdaptorChannel which implement the functionality specified
in the adaptor level in terms of the Oracle client libraries. Together, the
server-specific subclasses are referred to as an adaptor. For instance,
the Oracle subclasses are collectively referred to as the Oracle adaptor.

The adaptor level deals with database rows packaged as NSDictionary
objects. When an adaptor fetches from a relational database, it receives
the raw data in whatever form the database client libraries provide. The
adaptor then packages the data in dictionaries—one per database record.
Each dictionary contains key-value pairs; the keys typically represents
the name of a column, and the key’s value corresponds to the data for the
column in that particular row. Going the other way, the adaptor unpacks
dictionaries into raw data that the server can accept whenever it needs to
insert or update database rows.

The Database Level
The database level creates enterprise objects from the dictionaries
retrieved by the adaptor level. It’s also where snapshotting is performed.
Snapshotting is used by Enterprise Objects Framework to manage
updates. For caching, For updating, when an object is fetched from the
database, a snapshot is taken of its state. A snapshot—an NSDictionary
object—is consulted when you perform an update to verify that the data
in the row to be updated has not changed since you fetched the object.

EOAdaptor EOAdaptor
Context

EOAdaptor
Channel

Knows the schema.
Maintains a database

connection.

Manages
channels and
transactions.

Performs database
operations: select,

 insert, update, delete.
Corresponds to a
database cursor.
48

Classes in a Command-Line Program
Figure 14 shows the database level classes and the behaviors associated
with each class.

Figure 14. Database Level

Modeling Classes
The correspondence between an enterprise object class and stored
data is established and maintained in a model. A model defines, in
entity-relationship terms, the mapping between enterprise object
classes and a database. Figure 15 shows the modeling classes.

Figure 15. Modeling Classes

Manages
snapshotting.

Handles fetching,
faulting, and saving.

Manages transactions
and channels.

Used by
EODatabaseContext

for fetching.

EODatabase
Context

EODatabase EODatabase
Channel

EOModel

EOModel
Group

EOAttribute

EOStored
Procedure

EORelationship

EOEntity
49

Chapter 2 Enterprise Objects Framework Viewed Through Its Classes
Most of the modeling classes represent components of the database-to-
object mapping. The following table summarize the role of those classes:

In addition to storing a mapping between the database schema and
enterprise objects, an EOModel object stores information needed to
connect to the database server. This connection information includes the
name of the adaptor corresponding to your application’s database server.
An EOModel can also store information about a database’s stored
procedures (in EOStoredProcedure objects).

While a model can be generated programmatically at run time, the most
common approach is to use the EOModeler application to create models
and store them in files. The Framework knows how to initialize modeling
objects from a model file. Simply by adding a model file to a project,
you make the model’s database-to-object mapping available to the
Framework objects that need to reference it. All of the models available
to an application are managed by an EOModelGroup object; see the
EOModelGroup class specification in the Enterprise Objects Framework
Reference for more information.

For a discussion of entity-relationship modeling and how it relates to
Enterprise Objects Framework, see the Appendix “Entity-Relationship
Modeling” on page 257.

Database Element Model Object Object Mapping

Data Dictionary EOModel —

Table EOEntity Enterprise object class

Row — Enterprise object instance

Column EOAttribute Enterprise object instance variable
(class property)

Referential Constraint EORelationship Reference to another object
50

Classes in a Command-Line Program
The Control Layer
In a command-line program, the control layer’s responsibility is to manage
a graph of enterprise objects, tracking changes to them and directing the
access layer to commit those changes to the database when the program
is ready to save. The control layer classes that perform these duties are
EOObjectStoreCoordinator and EOEditingContext.
An EOObjectStoreCoordinator object manages interactions with
the access layer, while EOEditingContext objects manage graphs
of enterprise objects and track changes to those objects.

Interacting with the Access Layer
The control layer provides an infrastructure for managing enterprise
objects that is independent of the storage mechanism being used.
Put another way, you can use the control layer to interact with any
external store: a relational database, a live data feed, or the file system,
for example. To achieve this independence, the control layer defines an
abstract class, EOObjectStore, whose subclasses represent “intelligent”
sources and sinks of objects for EOEditingContexts. An object store is
responsible for constructing and registering objects and for committing
changes made in an editing context.

To allow applications to interact with more than one external store,
the control layer provides two subclasses of EOObjectStore:

• EOCooperatingObjectStore, an abstract class that defines the basic
API for object stores that work together to manage data from
several distinct data repositories.

• EOObjectStoreCoordinator, a concrete class whose instances
manages the interactions between editing contexts and
cooperating object stores.

The access layer’s EODatabaseContext is a concrete subclass
of EOCooperatingObjectStore. Although different subclasses of
EOObjectStore or EOCooperatingObjectStore can be defined
for different types of external stores, most applications use an
EOObjectStoreCoordinator and one or more EODatabaseContexts
to access relational databases.
51

Chapter 2 Enterprise Objects Framework Viewed Through Its Classes
Object Graph Management and Change Tracking
An object graph is a group of related enterprise objects that represents an
internally consistent view of an external store—typically a database. In a
running application, the object graph is the central repository for data and
business logic. An EOEditingContext object, which represents a single
“object space” or “document” in an application, manages this in-memory
graph of enterprise objects. All objects fetched from an external store are
registered in an editing context with a global identifier (an EOGlobalID
object) to uniquely identify each object. The editing context is then
responsible for watching for changes in its objects and recording
snapshots of them for object-based undo. For more information on
change tracking, see the EOEditingContext class specification and the
EOObserving interface (or protocol) specification in the Enterprise Objects
Framework Reference.

Classes in an Application Kit Client/Server Application

An Application Kit client/server application uses an architecture similar
to that in a command-line program, but it incorporates classes to
synchronize values between enterprise objects and the application’s user
interface. This section describes the roles of those classes and how they
fit into the application’s architecture.
52

Classes in an Application Kit Client/Server Application
Figure 16. Classes in an Application Kit Application

User Interface Objects
In a traditional client/server application such as the one described
in this chapter, Application Kit user interface objects (such as
NSPopUpButtons, NSForms, NSTextFields, and NSTableViews) are
used to display the values of enterprise objects. When values are edited

EOControlEOAccess

EOObjectStore
Coordinator

EODatabase
Context

EOEditing
Context

EODatabase EODatabase
Channel

EOModel

EOAdaptor EOAdaptor
Context

EOAdaptor
Channel

Relational
Database

EOMasterDetail
Association

EOControl
Association

EOTableView
Association

EODisplay
Group

EOInterface

EODisplay
Group

EODetail
DataSource

EODatabase
DataSource
53

Chapter 2 Enterprise Objects Framework Viewed Through Its Classes
in the user interface, these same Application Kit objects are used to
communicate the changes back to the enterprise objects. In Figure 16,
Application Kit classes are represented by a screen capture of a real
application’s user interface.

The Interface Layer
The interface layer in an Application Kit application synchronizes data
between the application’s user interface (Application Kit objects) and the
control layer’s graph of enterprise objects. The relationship between user
interface objects and enterprise objects is managed by EODisplayGroup
objects. More precisely, display groups are used by EOAssociation objects
to mediate between enterprise objects and the user interface.
EOAssociations link a single user interface object to one or more
class properties (keys) of the objects managed by a display group. The
properties’ values are displayed in the association’s user interface object.

In the Interface layer, EOAssociation objects “observe”
EODisplayGroups to make sure that the data displayed in the user
interface remains consistent with enterprise object data. Display Groups
interact with data sources, which supply them with enterprise objects.

Access and Control Layers
The roles of the access and control layers in an Application Kit application
are the same as they are in a command-line application. However, in an
Application Kit application, each layer supplies a data source for
interacting with the interface layer.

A data source is a subclass of the EODataSource abstract class that
presents an EODisplayGroup object with a standard interface to a store
of enterprise objects. From the perspective of the EODisplayGroup to
which a data source supplies enterprise objects, the actual mechanism
used for storing data is of no concern; everything below the data source
is effectively a “black box.” The interface layer interacts with all data
sources in the same way. A data source takes care of communicating with
the external data store to fetch, insert, update, and delete objects.

For most database applications, data sources are instances of
EODatabaseDataSource or EODetailDataSource (the data source classes
supplied with the Framework). EODatabaseDataSource, defined in
54

Classes in an HTML WebObjects Application
EOAccess, provides an interface to the Framework’s access layer and
ultimately, to a relational database. However, the data source can be any
object that is a subclass of the abstract class EODataSource. Thus, the
user interface layer can be used independently from the access layer for
other types of data sources, such as an array of objects constructed by an
application, or objects fetched from a flat-file database or a newsfeed.

Data sources can be arranged in master-detail configurations to support
master-detail displays. For example, suppose an application displays
movie studios in one table and the movies for the selected studio in
another table. Selecting a new studio updates the movies table to display
the movies for the newly selected studio. To support this user interface,
the application has a master data source for Studio objects and a detail
data source for Movie objects. Based on a relationship between Studio
and Movie (a studio has many movies), the detail data source limits its
Movie objects to those associated with the Studio that’s selected in the
application’s user interface.

Most often the master data source is an EODatabaseDataSource, while
the detail is an EODetailDataSource. EODetailDataSource is provided
by the control layer, and is a general purpose data source for master-detail
configurations.

Classes in an HTML WebObjects Application

The major difference between an Application Kit application and an
HTML web application is that the web application uses the WebObjects
framework instead of the Application Kit. Figure 17 shows how the
WebObjects framework provides a web application’s presentation layer.

The WebObjects box is jagged at the top because not all of the
WebObjects classes that participate in user interface management are
illustrated. For example, the WebObjects framework provides user
interface elements such as WOTextField and WOBrowser for generating
web pages that users see in their browsers. None of these classes are
shown. Rather, Figure 17 shows only the WebObjects framework class
that acts as the go-between for Enterprise Objects Framework’s control
layer and WebObjects user interface: WODisplayGroup.
55

Chapter 2 Enterprise Objects Framework Viewed Through Its Classes
WODisplayGroup is analogous to the interface layer’s EODisplayGroup.
They have virtually the same APIs, but EODisplayGroup works with the
interface layer’s EOAssociation’s and WODisplayGroup works with
WebObjects framework elements.

Figure 17. Classes in an HTML WebObjects Application

Relational
Database

EOControl

EOAccess

EOObjectStore
Coordinator

EODatabase
Context

EOEditing
Context

EODatabase EODatabase
Channel

EOModel

EOAdaptor EOAdaptor
Context

EOAdaptor
Channel

WODisplay
Group

WebObjects

WODisplay
Group

EODetail
DataSource

EODatabase
DataSource
56

Classes in a Web Application with a Java Client
Note that you don’t have to use WODisplayGroup’s in your application.
It’s primarily useful for managing batches of enterprise objects, so users can
page through the first set of objects, then the second, and so on.
Additionally, WebObjects Builder has a lot of built-in support for
WODisplayGroups. Using them, it’s much simpler to construct the user
interface for your web application, writing less code than you might if you
were to use your own solution.

Classes in a Web Application with a Java Client

The main difference between a Java web application and the other types
of applications is that a Java web application is distributed across an
application server and Java clients. However, within this distributed
structure, a Java web application combines architectural features from
other application types into one. Figure 18 shows the classes in a web
application. Notice that the access and control layers in the server side of
the application are the same as they are in a command-line application.
Similarly, the control and interface layers in the client side of the
application are the same as they are in an Application Kit application.
57

Chapter 2 Enterprise Objects Framework Viewed Through Its Classes
Figure 18. Classes in a Web Application with a Java Client

EOJavaClientEOJavaClient

JavaClient

Application Server

EOControl

EOObjectStore
Coordinator

EOEditing
Context

EOAccess

EODatabase
Context

EODatabase EODatabase
Channel

EOModel

EOAdaptor EOAdaptor
Context

EOAdaptor
Channel

Relational
Database

EOControl

EODistributed
ObjectStore

EOEditing
Context

EOMasterDetail
Association

EOControl
Association

EOTableView
Association

EODisplay
Group

EOInterface

EODisplay
Group

EODetail
DataSource

EODistributed
DataSource

EODistribution

EOJavaClient

EOObjectStore
Coordinator
58

Classes in a Web Application with a Java Client
To support distributing the application across the server and clients, the
distribution layer is inserted. There’s a server side and a client side to
the distribution layer. The server side, provided by the EOJavaClient
framework, is written in Objective-C. The client side, provided by the
com.apple.client.eodistribution package, is written in Java. Together,
the two sides of the distribution layer handle the communication
between the application server and the user’s Java client.

The Distribution Layer
The distribution layer provides channels through which the application
server and Java clients communicate. The default channel is an HTTP
channel, but you can write your own channel to use a different
communication protocol (CORBA, for example). Use of the channel is
completely transparent; the EODistributionContext on the server side
and the EODistributedObjectStore on the client side handle all the
interaction with the channel. So unless you are writing your own channel,
you don’t need to learn about EODistribution’s channel and related
classes.

The EODistributionContext class encodes data to send to the client and
decodes data it receives from the client. Additionally, it keeps track of
state necessary to keep the client and server in sync.

EODistributedObjectStore is a concrete subclass of the control layer’s
abstract EOObjectStore class. It merely incorporates knowledge of the
distribution layer’s channel so it can forward messages it receives from the
server to its editing context as well as messages going the other way.

EODistributedDataSource is a concrete subclass of the control
layer’s abstract EODataSource class. Whereas the access layer’s
EODatabaseDataSource fetches using an EODatabaseContext, an
EODistributedDataSource fetches using an editing context (which
in turn, forward the fetch request to the server where the request is
ultimately serviced by an EODatabaseContext).

Client-Side APIs
The EOControl and EOInterface classes on the client side of a Java web
application are actually not the same classes as the ones on the server side.
There are two different versions of each framework.
59

Chapter 2 Enterprise Objects Framework Viewed Through Its Classes
On the server side, you can write your application in either
Objective-C or Java. The Java APIs (com.apple.yellow.eoaccess,
com.apple.yellow.eocontrol, and com.apple.yellow.eointerface) are
actually wrappers for the corresponding Objective-C frameworks.
When you invoke a Java method from one of the com.apple.yellow
packages, the message is forwarded across Apple’s Java bridge to a
corresponding Objective-C object. On the client side, however, the
APIs (com.apple.client.eocontrol, com.apple.client.eodistribution,
and com.apple.client.eointerface) are implemented in pure Java.

Note: In the client, you don’t have the option of writing Objective-C
code.

Conceptually, the classes in com.apple.yellow and com.apple.client are
the same and generally their APIs are identical. However, there are some
differences, the most significant of which are that:

• EOEditingContext in the client doesn’t support undo and redo.

• The EOAssociation subclasses in the client are implemented in
terms of Swing (the presentation component of Sun’s JDK) instead
of the Application Kit.

Framework Dependencies

The architectural depictions of Enterprise Objects Framework in the
previous sections present the ordering of the Framework components in
terms of the conceptual data flow in the system. Another way to look at
Enterprise Objects Framework is in terms of the structural dependencies
of the components on one another.

Figure 19 shows the relationships between the Framework’s Objective-C
frameworks (and also for the corresponding Java versions).
60

Framework Dependencies
Figure 19. Objective-C Framework Dependencies

The control layer is the lowest layer in the Framework. It can be
thought of as an extension of Foundation in that it defines generic core
functionality, such as key-value access and object change notification.
The control layer centers around EOEditingContext, a subclass of
EOObjectStore that manages enterprise objects in memory.

The access layer extends the control layer by implementing an
EOObjectStore for relational databases, EODatabaseContext.
WebObjects framework too depends on EOControl, because it
provides an EOEditingContext with each WOSession object.

The interface layer extends the control layer and the Application Kit
by adding bindings between enterprise objects and the user interface.
This keeps the values of enterprise objects in sync with their display in
the user interface.

Each concrete adaptor (ODBCAdaptor and OracleAdaptor, for example)
extends the access layer by implementing concrete subclasses of the
access layer’s adaptor level classes (EOAdaptor, EOAdaptorContext,
and EOAdaptorChannel).

EOInterface

EOControl AppKit

Foundation

Operating System

WebObjects

EOJavaClientEOAdaptor

EOAccess EOInterface

EOControl AppKit

Foundation

Operating System

WebObjects

EOJavaClientEOAdaptor

EOAccess
61

Chapter 2 Enterprise Objects Framework Viewed Through Its Classes
Finally, the server-side EOJavaClient framework extends WebObjects
by providing a WOComponent for displaying Java interfaces.

Figure 20 shows the relationships between the Framework’s pure
Java packages (for writing Java client applications).

Figure 20. Java Package Dependencies

Again the control layer is the lowest layer in the Framework. The
interface layer extends the control layer and Swing (the presentation layer
of Sun’s JDK). Finally, the distribution layer extends the control layer by
implementing an EOObjectStore for communicating to an application
server through a channel.

EOInterfaceEODistribution

Foundarion

Sun's JDK

Java VM

EOControl

EOInterfaceEODistribution

Foundarion

Sun's JDK

Java VM

EOControl JDK's Swing
62

Part II

Enterprise Object Design

Designing Enterprise ObjectsChapter 3

The Enterprise Objects Framework and the applications you build
with it revolve around the enterprise objects that you design.
Designing these objects, then, is in many ways the essence of creating
an Enterprise Objects Framework application. This chapter explains
the mechanics of designing enterprise objects, describes their structure
and interaction with the Framework, and explains how you can take
advantage of features provided by the Framework.

Designing an enterprise object entails three major steps:

• Designing your schema
• Modeling the enterprise object
• Implementing the enterprise object

This chapter describes the activities that occur during each. The
EOModeler application plays a part in all stages of enterprise object
design, so this chapter refers frequently to Enterprise Objects Framework
Tools and Techniques, where using EOModeler is documented.

This chapter uses selections from the Enterprise Objects Framework
on-line examples to explain the principles of designing an enterprise
object. In particular, the chapter focuses on the Customer entity in the
Rentals database. A customer is a video store member who’s authorized
to rent videos.

Designing Your Schema

If you’re working with an existing database, its schema will dictate
many of the decisions you make in designing your enterprise objects.
If you’re designing your database at the same time as your enterprise
objects, however, you can let each design influence the other as they’re
developed and before you implement them. Be sure to keep both
designs in mind as you work; decisions you make about the database
design can affect your enterprise object design, and vice versa. This
chapter doesn’t address issues of database design itself, but the
information presented here can help you to create a design that will
work effectively with the Enterprise Objects Framework.
67

Chapter 3 Designing Enterprise Objects
Defining the Model

The work of writing enterprise objects typically begins in EOModeler.
You make the following decisions for your enterprise object in
EOModeler:

• Should your enterprise object be an EOGenericRecord or a
custom class?

• What database attributes do you want to include as properties
in your class?

• What data types should the class properties be?

• What relationships does your enterprise object have with
other objects?

• What referential integrity rules should you specify for the
relationships in your enterprise object?

• Does your enterprise object class have inheritance relationships
with other enterprise object classes?

These issues are discussed in the following sections.

EOGenericRecord or Custom Class?
Enterprise Objects Framework provides a “default” enterprise object
class, EOGenericRecord. An EOGenericRecord can take on values for
any properties defined in your application’s model (see the section
“Accessing an Enterprise Object’s Data” on page 82 for more discussion
of this), but implements no custom behavior. EOGenericRecord objects
can hold simple values as well as refer to other enterprise objects through
relationships defined in the model.

The criterion for deciding whether to make your enterprise objects
custom classes or to simply use the EOGenericRecord class is behavior.
One of the main reasons to use the Enterprise Objects Framework is to
associate behavior with your persistent data. Behavior is implemented as
methods that “do something,” as opposed to merely returning the value
68

Defining the Model
for a property. Since the Framework itself handles most of the behavior
related to persistent storage, you can focus on the behavior specific to
your application.

Because the Customer class in the Rentals database has specialized
behavior—for example, it rents units—it needs to be a custom class.

Which Attributes Should Be Class Properties?
By default, EOModeler marks all of the attributes read in from the
database as class properties. When an attribute is marked as a class
property, it means that the attribute will be included in your class
definition when you generate source files for the class, and that it will be
fetched and passed to your enterprise object when you create instances
from the database.

The attributes you mark as class properties should only be ones whose
values are meaningful in the object graph that’s created when you fetch
objects from the database. Attributes that are essentially database
artifacts shouldn’t be marked as class properties. For example:

• As a general rule, foreign and primary keys shouldn’t be included
in your enterprise object as class properties. The only exception to
this rule is when the key has meaning to the user (such as a credit
card number) and therefore must be displayed in the user interface.

• Relationships that are just used in EOModeler as a vehicle for
flattening attributes from another entity shouldn’t be included as
class properties. For example, suppose an Employee class flattens
address properties (streetAddress , city , and so on) from an Address
entity and that Employee includes these flattened attributes as
class properties. The relationship from Employee to Address
doesn’t need to be a class property if it’s otherwise not needed. For
more discussion of this topic see “How Should Your Enterprise
Object Manage Relationships with Other Objects?” on page 72.

• Relationships that represent an entity’s relationship to an
intermediate join table (also known as a correlation table) shouldn’t
be included in your enterprise objects as class properties (unless
they contain data that’s meaningful in your application).
69

Chapter 3 Designing Enterprise Objects
For example, in the Movie database, the Director table acts as an
intermediate table between Movie and Talent and exists purely
to define that relationship. It has no data besides its foreign keys.
Because of this, you never need to fetch instances of Director into
your application. However, it makes sense to specify a relationship
between Movie and Director and between Director and Talent,
and to flatten that second relationship to give Movie access to the
Talent table. The flattened relationship, possibly named directors ,
can then be marked as a class property, because it contains objects
that should be included in the object graph.

Although Director contains no data besides its foreign keys, some
intermediate tables do. For example, the MovieRole table acts as
an intermediate table between Movie and Talent, and it includes
the attribute roleName . Because of this, it’s likely that if your
enterprise object had a relationship to MovieRole, you’d want to
include that relationship as a class property to be able to access the
value of roleName .

What Data Types Should Your Properties Be?
When you create a new model, Enterprise Objects Framework maps
external database data types to the following standard value classes:

Additionally, you can map external data types to custom value classes
defined by your application. When you’re working with custom data,
you’ll typically want to convert binary data into a meaningful form.
However, since you define its form, you have to convert it yourself.
The Framework allows you to define a custom class whose instances are
initialized with binary or string data; this prevents your accessor methods
from having to explicitly convert the data, and allows other objects to

Java Objective-C

String NSString

BigDecimal (java.math) NSDecimalNumber

Number NSNumber

NSGregorianDate NSCalendarDate

NSData NSData
70

Defining the Model
access your enterprise object’s property in its intended form rather than
as an NSData object. For more discussion of this subject, see the chapter
“Advanced Enterprise Object Modeling” on page 105.

Working with Numeric Values
There are basically two different choices for representing numeric values
in your model:

• Numbers that correspond to money values should be represented
in your model as BigDecimals (or NSDecimalNumbers in
Objective-C). This is because in the Enterprise Objects
Framework, numeric database values are stored in one of two types
of objects: Number and its subclasses or BigDecimal (NSNumber
or NSDecimalNumber in Objective-C). When you use Number,
values are limited to double precision, and operations are inexact.
Using BigDecimal provides high precision and smooth conversions
between strings, BigDecimals, and money.

• Numbers that represent integer or floating point values in your
database should be declared as Number objects (NSNumbers in
Objective-C) in your model. You then use the Attribute Inspector
to specify the scalar type to which the Number will be coerced.
For example, if you’re working with scientific data, you should
represent it as a Number that will be coerced to a double .

Conversion of Numeric Values
When the Framework passes a Number value (NSNumber in
Objective-C) to your object, the value can be converted to the
corresponding scalar (numeric) type if your accessor method or instance
variable requires it (for more information, see “Accessing an Enterprise
Object’s Data” on page 82). For example, suppose your enterprise object
defines these accessor methods:

public void setAge (int age)
public int age

For the setAge method, the Number value for the “age” key is converted
to an int and passed as age. Similarly, the return value of the age method
is converted to an Number.
71

Chapter 3 Designing Enterprise Objects
How Should Your Enterprise Object Manage
Relationships with Other Objects?
In EOModeler you can specify relationships between entities. For
example, in the Rentals database in the on-line examples, the Member
entity can have several relationships to other entities, including:

• To-one relationship to Customer
• To-one relationship to CreditCard
• To-many relationship to Guest
• To-many relationship to Rental
• To-many relationship to Fee

You can use relationships to access data in the destination entity from the
source entity.

When you include relationships as class properties, to-one relationships
are represented as references in the object graph and to-many
relationships are represented as NSArrays. You can see this more clearly
if you look at the way Customer’s to-one relationship to CreditCard and
to-many relationship to Rental are represented as instance variables in
the Customer class:

// Reference to a CreditCard object in the object graph
protected CreditCard creditCard;

// Array of Rental objects
protected NSMutableArray rentals;

For the most part, you access the data in other objects by using
relationship properties to traverse the in-memory object graph in your
running application. For example, the following statement uses
Customer’s creditCard relationship to access the authorizationDate
property in the CreditCard object:

date = customer.creditCard().authorizationDate();

Likewise, the following statement uses the Customer’s rentals
relationship to return an NSArray containing a customer’s Rental objects:

rentalArray = customer.rentals();
72

Defining the Model
Referential Integrity
When your enterprise object has relationships with other objects, you can
use EOModeler to define rules to govern those relationships. Each of the
rules possible are described briefly in the following sections. For more
information on how to set these options, see the book Enterprise Objects
Framework Tools and Techniques.

Optionality
Optionality refers to whether a relationship is optional or mandatory. For
example, you can require all departments to have a location (mandatory),
but not require that every employee have a manager (optional).

Delete Rules
This refers to the rules that should be applied to an entity that’s involved
in a relationship when the source object is deleted. For example, you
might have a department with multiple employees. When a user tries
to delete the department, you can:

• Delete the department and remove any back reference the
employee has to the department (nullify).

• Delete the department and all of the employees it contains
(cascade).

• Refuse the deletion if the department contains employees (deny).

• Delete the department but do not remove any back reference the
employee has to the department. Use this option with caution as
dangling references may result.

Owns Destination
You can set a source object as owning its destination objects. When a
source object owns its destination objects and you remove a destination
object from the source object’s relationship array, you’re also deleting it
from the database (alternatively, you can transfer it to a new owner). This
is because ownership implies that the owned object can’t exist without an
owner—for example, line items can’t exist outside of a purchase order.
73

Chapter 3 Designing Enterprise Objects
By contrast, you might have a department object that doesn’t own its
employee objects. If you remove an employee from a department’s
employees array, the employee continues to exist in the database, but
its department variable is set to null (or nil in Objective-C). If you really
intend to delete the employee from the database, you’d have to do it
explicitly.

Propagates Primary Key
You can also specify in EOModeler that the primary key of the source
entity should be propagated to newly inserted objects in the destination
of the relationship. This is used for a to-one owning relationship, where
the owned object has the same primary key as the source. For example,
in the Movies database the TalentPhoto entity has the same primary key
as the entity that owns it, Talent. In this scenario, if you create a new
Talent object and the Talent doesn’t already have a TalentPhoto, the
Framework automatically creates a TalentPhoto object for you.

Mapping an Entity Across Multiple Tables
In certain special cases you may decide to use EOModeler to “flatten”
attributes from one entity into another. In general you should only flatten
attributes across one-to-one relationships (like Employee to Address)
where the destination entity is never fetched directly. Otherwise, you run
the risk that the values of flattened attributes can get out of sync with the
most current view of data in your application.

Some examples of good uses of flattened attributes are as follows:

• Combining multiple tables to form a logical unit.

For example, you might have employee data that’s spread across
multiple tables such as Address, Benefits, and so on. If you have
no need to access these tables individually (that is, if you’d
never create an Address object since the address data is always
subsumed in Employee), then it makes sense to flatten attributes
from those entities into Employee.
74

Implementing an Enterprise Object
• Implementing vertical inheritance mapping.

For example, the Member class in the RentalsInheritance model
has two flattened attributes: firstName and lastName . It flattens
these attributes from the Customer entity. Customer is a parent
entity of Member and Guest that provides attributes common
to both. Because Customer is an abstract entity and is therefore
never instantiated in the object graph, the only way to access
Customer’s data is to flatten the appropriate attributes into its
sub-entities. The relationship between Member, Guest, and
Customer is an example of vertical inheritance mapping—for
more discussion of this topic, see the chapter “Advanced
Enterprise Object Modeling” on page 105.

• If your application (or the property in question) is read-only.

When you use flattened attributes, you don’t need to include the
relationship as a class property—there’s no need to since the data it
would be used to access is already included in the source entity.

For more discussion of this topic, see the book Enterprise Objects
Framework Tools and Techniques.

What about Inheritance?
You can use the Advanced Entity Inspector in EOModeler to specify
an entity’s parent entity. For example, the Customer entity is a parent
to both Member and Guest in the RentalsInheritance model. For more
discussion of the different approaches you can use for inheritance, see the
chapter “Advanced Enterprise Object Modeling” on page 105.

Implementing an Enterprise Object

As discussed in the section “EOGenericRecord or Custom Class?” on
page 68, one of the first decisions you need to make about an enterprise
object is whether you want it to be an EOGenericRecord or a custom
class. Use EOGenericRecords to represent enterprise objects that don’t
require custom behavior, and create custom classes to represent
enterprise objects that do.
75

Chapter 3 Designing Enterprise Objects
Enterprise Objects Framework interacts with generic records and custom
classes the same way. It defines the set of methods for supporting
operations common to all enterprise objects and uses only those methods.
The EOEnterpriseObject interface (or informal protocol in Objective-C)
specifies the complete set. It includes methods for initializing instances,
announcing changes, setting and retrieving property values, and
performing validation of state.

You rarely need to implement the EOEnterpriseObject interface from
scratch. The Framework provides default implementations of all its
methods. In Java, the class EOCustomObject implements the interface,
so your custom classes should inherit from it. In Objective-C, categories
on the root class, NSObject, provide default implementations. Regardless
of what language you choose, some of the default method
implementations are for custom classes to override, but most are meant to
be used as defined by the Framework. Many methods are used internally
by the Framework and are rarely invoked by your application code. For
more information on EOEnterpriseObject and its methods, see the
interface specification in Enterprise Objects Framework Reference.

The remainder of this chapter describes implementing custom classes.

Generating Source Files
The easiest way to create a custom enterprise object is with EOModeler’s
Generate Java Files, Generate ObjC Files, and Generate Client Java
Files commands. These commands take the attributes and relationships
you’ve defined in your model, and use them to generate source code for
a corresponding enterprise object class.

You can generate the source code in Java (Generate Java Files) or
Objective-C (Generate ObjC Files). The Generate Client Java Files
command creates source code for classes that will be used in the client
side of a distributed WebObjects application.

If you choose Java as your language, EOModeler creates a .java file for
your class. If you choose Objective-C, it creates both a header (.h) and an
implementation (.m) file. No matter what the language, the source files
created by EOModeler are completely functional.
76

Implementing an Enterprise Object
Superclass
EOModeler assumes that your custom classes descend from
EOCustomObject (or NSObject in Objective-C) so that they inherit the
Framework’s default implementations of the EOEnterpriseObject
interface.

Instance Variables
EOModeler’s generated source code files contain instance variables for all
of the corresponding entities class properties, both attributes and
relationships alike. For example, the following code excerpts show the
instance variables created for the Member class:

In Java, (from Member.java)

protected String city;
protected NSGregorianDate memberSince;
protected String phone;
protected String state;
protected String streetAddress;
protected String zip;
protected Number customerID;
protected String firstName;
protected String lastName;
protected CreditCard creditCard;
protected NSMutableArray rentals;

In Objective-C (from Member.h)

NSString *city;
NSCalendarDate *memberSince;
NSString *phone;
NSString *state;
NSString *streetAddress;
NSString *zip;
NSNumber *customerID;
NSString *firstName;
NSString *lastName;
CreditCard *creditCard;
NSMutableArray *rentals;

All of the instance variables correspond to attributes in the
Member entity except for creditCard and rentals , which correspond
to relationships.
77

Chapter 3 Designing Enterprise Objects
Primary key generation
Enterprise objects don’t have to declare instance variables for primary
key and foreign key values. The Framework manages primary and
foreign keys automatically.

The default mechanism for assigning unique primary keys is provided
with the EOAdaptorChannel method primaryKeyForNewRowWithEntity
(or primaryKeyForNewRowWithEntity: in Objective-C). If you need to
provide a custom mechanism for assigning primary keys, you can
implement the EODatabaseContext delegate method
databaseContextNewPrimaryKey
(or databaseContext:newPrimaryKeyForObject:entity: in Objective-C).
Using either of these two techniques means you don’t need to store
the primary key in your enterprise object. For more discussion of primary
keys, see the chapter “Answers to Common Design Questions” on
page 221.

Note that Enterprise Objects Framework doesn’t support modifiable
primary key values—you shouldn’t design your application so that users
can change a primary key’s value. If you really need this behavior, you
have to implement it by deleting an affected object and reinserting it with
a new primary key.

Writing Accessor Methods
When you generate source files for custom classes in EOModeler, the
resulting files include default accessor methods. Accessor methods let
you set and return the values of your class properties (instance variables).
For example, here are some of Customer’s accessor methods:
78

Implementing an Enterprise Object
In Java, (from Member.java)

public NSGregorianDate memberSince() {
willChange();
return memberSince;

}

public void setMemberSince(NSGregorianDate value) {
willChange();
memberSince = value;

}

public CreditCard creditCard() {
willChange();
return creditCard;

}

public void setCreditCard(CreditCard value) {
willChange();
creditCard = value;

}

public NSArray rentals() {
willRead();
return rentals;

}

public void setRentals(NSMutableArray value) {
willChange();
rentals = value;

}

public void addToRentals(Rental object) {
willChange();
rentals.addObject(object);

}

public void removeFromRentals(Rental object) {
willChange();
rentals.removeObject(object);

}

79

Chapter 3 Designing Enterprise Objects
In Objective-C (from Member.m)

- (void)setMemberSince:(NSCalendarDate *)value
{

[self willChange];
[memberSince autorelease];
memberSince = [value retain];

}
- (NSCalendarDate *)memberSince { return memberSince; }

- (void)setCreditCard:(CreditCard *)value
{

// a to-one relationship
[self willChange];
[creditCard autorelease];
creditCard = [value retain];

}
- (CreditCard *)creditCard { return creditCard; }

- (void)addToRentals:(Rental *)object
{

// a to-many relationship
[self willChange];
[rentals addObject:object];

}
- (void)removeFromRentals:(Rental *)object
{

// a to-many relationship
[self willChange];
[rentals removeObject:object];

}
- (NSArray *)rentals { return rentals; }

Features introduced by these code excerpts are discussed in the following
sections.

Note: You don’t have to provide accessor methods for your object’s
properties. The Framework can access your object’s properties directly
(through its instance variables). For more information, see the section
“Accessing an Enterprise Object’s Data” on page 82.”

Change Notification
In the above code excerpts from Member source files, you can see that
each of the “set” methods includes an invocation of the willChange
method.
80

Implementing an Enterprise Object
In Enterprise Objects Framework, objects that need to know about
changes to an enterprise object register as observers for change
notifications. When an enterprise object is about to change, it has the
responsibility of posting a change notification so that registered observers
are notified. To do this, enterprise objects should invoke the method
willChange prior to altering their state. This is invoked by default in
generated source code’s “set” methods, but whenever you add your own
methods that change the object’s state, you need to remember to include
an invocation.

An implementation of willChange is provided in EOCustomObject (or
NSObject in Objective-C), so you don’t have to implement it yourself.
For more information on change notification, see the specification for the
control layer’s EOObserverCenter class in Enterprise Objects Framework
Reference.

Note: If you’re using EOGenericRecord, you don’t have to worry about
invoking willChange . As the default enterprise object class,
EOGenericRecord handles change notifications as part of its normal
behavior.

Faulting
Similar to the way “set” methods invoke the willChange method, Java
“get” methods include an invocation of willRead . This method is part of
Enterprise Objects Framework’s faulting mechanism for postponing an
object’s initialization until its actually needed. Faulting is also provided
with Objective-C, but its implementation is different and doesn’t require
the willRead method.

In Java, the willRead method and a handful of others are defined
in the Framework’s EOFaulting interface. EOFaulting is a part
of EOEnterpriseObject, so your custom classes inherit a default
implementation of it. The default implementation of willRead checks
to see if the receiver has already been fully initialized. If it hasn’t been,
it fills the object with values fetched from the database. Before your
application attempts to message an object, you must ensure that it has its
data. To do this, enterprise objects invoke the method willRead prior to
any attempt to access the object’s state, most typically in “get” methods.
Enterprise Objects don’t have to invoke willRead in “set” methods,
because the willChange method invokes willRead for you.
81

Chapter 3 Designing Enterprise Objects
For more information on faulting, see the interface specification for
EOFaulting in Enterprise Objects Framework Reference. For more
information on Objective-C’s faulting mechanism, see the EOFault class
specification.

Accessing Data through Relationships
Relationships and flattened properties are treated no differently than
properties based on the entity’s original attributes.

For example, Customer can use its creditCard relationship to traverse the
object graph and change values in the CreditCard object. If you want to
access information about a Customer’s credit card, your code can do
something like this:

In Java:

customer.creditCard().limit();

In Objective-C:

[[member creditCard] limit];

You can also modify attributes in the object graph regardless of what table
they came from. For example, suppose that Customer’s streetAddress
attribute was flattened from an Address entity. Customer could have a
setStreetAddress method that modified the attribute, even though it’s not
actually stored in the Customer table.

Accessing an Enterprise Object’s Data
In implementing your enterprise object classes, you want to focus on the
code that’s unique to your application, not on code that deals with fitting
your objects into the Framework. To this end, the Framework uses a
standard interface for accessing an enterprise object’s properties and
provides a default implementation that takes advantage of methods
you’re likely to write for your own use anyway.

This data transport mechanism is defined by the EOKeyValueCoding
interface (or informal protocol in Objective-C). It specifies that properties
of an object are accessed indirectly by name (or key), rather than directly
through invocation of an accessor method or as instance variables.
82

Implementing an Enterprise Object
EOKeyValueCoding is incorporated in the EOEnterpriseObject
interfaces, so your custom classes automatically inherit key-value coding
behavior that is sufficient for most purposes.

The basic methods for accessing an object’s values are takeValueForKey
and valueForKey (takeValue:forKey: and valueForKey: in Objective-C),
which set or return the value for the specified key, respectively.
The default implementations use the accessor methods normally
implemented by objects (or to access instance variables directly if
need be), so that you don’t have to write special code simply to integrate
your objects into the Enterprise Objects Framework.

There are corresponding methods takeStoredValueForKey and
storedValueForKey (takeStoredValue:forKey: and storedValueForKey:
in Objective-C) are similar, but they’re considered to be private to
the Framework and to the enterprise object class that provides them.
The stored value methods are for use by the Framework for transporting
data to and from trusted sources. For example, takeStoredValueForKey
is used to initialize an object’s properties with values fetched from the
database, whereas takeValueForKey is used to modify an object’s
properties to values provided by a user.

Public Access with the Basic Methods
When accessing an object’s class properties, the default implementations
of the basic key-value coding methods use the class definition. They look
for “set” methods in the following sequence:

set Property

_set Property

where property is the name of the property as in lastName . Note that the
first letter of the property name is made uppercase as in setLastName .

Similarly, the key-value coding methods look for “get” methods in the
following sequence:

get Property

property

_get Property

_property
83

Chapter 3 Designing Enterprise Objects
If no accessor methods can be found, the key-value coding methods look
for instance variables containing the property’s name and sets or retrieves
their value directly. The search order for instance variables is as follows:

property

_property

where property is the name of the property as in lastName .

By using the accessor methods you normally define for your objects,
the default implementations of the key-value coding methods allow
you to concentrate on implementing custom behavior. They also allow
your objects to determine how their properties are accessed. For
example, your Employee class can define a salary method that just
returns an employee’s salary directly or calculates it from another value.

Note: You shouldn’t use “set” methods to perform validation. Rather,
you should use the validation methods, described in “Performing
Validation” on page 87.

Private Access with the Stored Value Methods
The stored value methods, takeStoredValueForKey and
storedValueForKey , are used by the framework to store and restore
an enterprise object’s properties, either from the database or from
an in-memory snapshot (for undoing changes to an object and for
synchronizing objects between child and parent editing contexts in
a nested configuration, for example).This access is considered private
to the enterprise object and is invoked by the Framework to effect
persistence on the object’s behalf. On the other hand, the basic key-value
coding methods are the public API to an enterprise object. They are
invoked by clients external to the object, such as for interactions with
the user interface or with other enterprise objects.

Like the basic key-value coding methods, the stored value methods
access an object’s properties by invoking property-specific accessor
methods or by directly accessing instance variables. However, the stored
value methods use a different search order for resolving the property key:
they search for a private accessor first (a method beginning with an
underbar), then for an instance variable, and finally for a public accessor.
84

Implementing an Enterprise Object
Enterprise object classes can take advantage of this distinction to simply
set or get values when properties are accessed through the private API
(on behalf of a trusted source) and to perform additional processing when
properties are accessed through the public API. Put another way, the
stored value methods allow you bypass the logic in your public accessor
methods, whereas the basic key-value coding methods execute that logic.

The stored value methods are especially useful in cases where property
values are interdependent. For example, suppose you need to update a
total whenever an object’s bonus property is set:

In Java:

void setBonus(double newBonus) {
willChange();
_total += (newBonus - _bonus);
_bonus = newBonus;

}

In Objective-C:

- (void)setBonus:(double)newBonus {
[self willChange];
_total += (newBonus - _bonus);
_bonus = newBonus;

}

This total-updating code should be activated when the object is updated
with values provided by a user (through the user interface), but not when
the bonus property is restored from the database. Since the Framework
restores the property using takeStoredValueForKey and since this method
accesses the _bonus instance variable in preference to calling the public
accessor, the unnecessary (and possibly expensive and harmful)
recomputation of _total is avoided. If the object actually wants to
intervene when a property is set from the database, it has two options:

• Implement _setBonus (_setBonus: in Objective-C).

• Replace the Framework’s default stored value search order
with the same search order used by the basic methods.
To do this, in your custom class, implement the static method
useStoredAccessor to return false . (In Objective-C, override
the class method useStoredAccessor to return NO.)
85

Chapter 3 Designing Enterprise Objects
Error Handling methods
EOKeyValueCoding defines two additional methods for
handling error conditions: handleQueryWithUnboundKey and
handleTakeValueForUnboundKey (handleQueryWithUnboundKey:
and handleTakeValue:forUnboundKey: in Objective-C). The default
implementation of the key-value coding methods invoke these methods
when they receive a key for which they can find no accessor methods or
instance variables. The default implementations throw exceptions, but
you can override them to handle the error in a way that’s appropriate for
your custom class.

Writing Derived Methods
The source files generated by EOModeler provide a basic
implementation that doesn’t go beyond the functionality provided by
an EOGenericRecord. But you can use the files as a basis for adding
behavior to your enterprise object.

One kind of behavior you might want to add to your enterprise object
class is the ability to apply a filter to an object’s to-many relationship
property and return a subset of the destination objects. For example, you
could have an overdueRentals method in the Customer class that returns
the subset of a customer’s rentals that are overdue:

In Java:

public NSArray overdueRentals() {
EOQualifier qualifier;

qualifier = new EOKeyValueQualifier(
“isOverdue”,
EOQualifier.QualifierOperatorEqual,
new Boolean(true));

return EOQualifier.filteredArrayWithQualifier(
allRentals(),
qualifier);

}

86

Implementing an Enterprise Object
In Objective-C:

- (NSArray *)overdueRentals {
EOQualifier *qualifier;

qualifier = [[[EOKeyValueQualifier alloc]
initWithKey:@”isOverdue”
operatorSelector:EOQualifierOperatorEqual
value:[NSNumber numberWithBool:YES]autorelease];

return [[self allRentals]
filteredArrayUsingQualifier:qualifier];

}

The overdueRentals method creates a qualifier to find all of a customer’s
overdue rentals. The qualifier is performed in memory against the
complete set of a customer’s rentals.

With the addition of this method, Customer has a “get” accessor method
with no corresponding “set” method. A setOverdueRentals method
doesn’t make sense because overdueRentals is derived. However, since
Enterprise Objects Framework invokes accessor methods automatically,
you may wonder if the absence of a setOverdueRentals method can cause
problems. The answer is no, you don’t have to define a corresponding set
method. Enterprise Objects Framework will not attempt to invoke
setOverdueRentals unless you bind the overdueRentals property to an
editable user interface object.

Performing Validation
A good part of your application’s business logic is usually validation—for
example, verifying that customers don’t exceed their credit limits, that
return dates don’t come before their corresponding check out dates, and
so on. In your enterprise object classes, you implement methods that
check for invalid data, and the framework automatically invokes them
before saving anything to the database.

The EOValidation interface (informal protocol in Objective-C) defines
the way that enterprise objects validate their values. The validation
methods can check for illegal value types, values outside of established
limits, illegal relationships, and so on. Like EOKeyValueCoding,
EOValidation is incorporated in the EOEnterpriseObject interface, so
your custom classes automatically inherit some basic validation behavior.
87

Chapter 3 Designing Enterprise Objects
The default implementations of these methods check the object’s state
against constraints and rules defined in your model.

There are two kinds of validation methods. The first validates an entire
object to see if it’s ready for a specific operation (inserting, updating, and
deleting) and the second validates individual properties. The two
different types are discussed in more detail in the following sections.
For more a more detailed discussion, see the EOValidation interface
specification in the Enterprise Objects Framework Reference.

Validating Before an Operation
The methods for validating an object before a specific operation are:

• validateForSave
• validateForDelete
• validateForInsert
• validateForUpdate

When you perform a particular operation on an enterprise object
(such as attempting to delete it), the EOEditingContext sends a
validation message to your enterprise object appropriate to the operation.
Based on the result, the operation is either accepted or refused.
For example, referential integrity constraints in your model might
state that you can’t delete a Customer object that has Rentals. If a user
attempts to delete a customer that has rentals, the deletion is refused.

You might want to override these methods to perform additional
validation to what can be specified in a model. For example, your
application should never allow a fee to be deleted if it hasn’t been paid.
88

Implementing an Enterprise Object
You could implement this in a Fee class as follows:

In Java:

public void validateForDelete() throws
EOValidation.Exception
{

EOValidation.Exception superException = null;
EOValidation.Exception myException = null;

try {
super.validateForDelete()

} catch (EOValidation.Exception s) {
superException = s;

}

if (!isPaid())
myException = new EOValidation.Exception(

"You can’t remove an unpaid fee.");

if (superException && myException) {
NSMutableArray exceptions = new NSMutableArray();
exceptions.addObject(superException);
exceptions.addObject(myException);
throw

EOValidation.Exception.aggregateExceptionWithExceptions(
exceptions);

} else if (superException) {
throw(superException);

} else if (myException) {
throw(myException);

}
}

89

Chapter 3 Designing Enterprise Objects
In Objective-C:

- (NSException *)validateForDelete
{

NSException *superException = [super validateForSave];
NSException *myException = nil;

if (![self isPaid])
myException = [NSException

validationExceptionWithFormat:
@"You can’t remove an unpaid fee."];

if (superException && myException) {
return [NSException

aggregateExceptionWithExceptions:
[NSArray arrayWithObjects:
superException, myException, nil];

} else if (superException) {
return superException;

} else if (myException) {
return myException)

}

return nil;
}

The default implementation of validateForDelete inherited by your
custom classes performs basic checking based on referential integrity
rules specified in your model. Your custom classes should therefore
invoke super’s implementation before performing their own validation as
and should combine any exception thrown by super’s implementation
with their own as shown above.

Note that the Java and Objective-C validation methods work slightly
differently. The Java methods throw exceptions to indicate a validation
failure whereas the Objective-C methods create and return exceptions for
the Framework to raise.

The advantage of using one of the validateFor... methods is that they allow
you to perform both “inter-” and “intra-” object validation before a
particular operation occurs. This is useful if you have an enterprise object
whose properties have interdependencies. For example, if you’re saving
rental data, you might want to confirm that the check out date precedes
the return date before committing the changes.
90

Implementing an Enterprise Object
Validating Individual Properties
EOValidation defines a fifth method for validating individual properties:
validateValueForKey (validateValue:forKey: in Objective-C). It’s like the
key-value coding methods in that it validates properties by name (or key).
The default implementation of validateValueForKey that your custom
classes inherit searches for a method of the form validate Key and invokes
it if it exists. These are the methods that your custom classes can
implement to validate individual properties. For example, the Customer
class might have a validateStreetAddress method:

In Java:

public void validateStreetAddress(String address)
throws EOValidation.Exception

{
if (/** address is invalid */)

throw new EOValidation.Exception("Invalid
address.");
}

In Objective-C:

- (NSException *)validateStreetAddress:
(NSString *)address

{
if (/* address is invalid...*/)

return [NSException validationExceptionWithFormat:
@"Invalid address."];

return nil;
}

If a user tries to assign a value to streetAddress , the
default implementation of validateValueForKey invokes the
validateStreetAddress method. Based on the result, the operation
is either accepted or refused.

Prior to invoking your validateKey methods, the default implementation
of validateValueForKey validates the property against constraints specified
in your model (such as NULL constraints).

Note that the default implementations of validateForSave ,
validateForInsert , and validateForUpdate provided by EOCustomObject
(NSObject in Objective-C) invoke validateValueForKey for each of an
object’s class properties.
91

Chapter 3 Designing Enterprise Objects
Validating User Input
Besides putting validation in a model and in an enterprise object class,
you can also put validation in the user interface. The way that validation
is normally added to the user interface is through formatters, which
perform data type and formatting validation when users enter values.

Additionally, you can design your Application Kit and Java client
applications so that the validation in your enterprise objects is performed
as soon as a user attempts to leave an editable field in the user interface.
There are two steps to doing this:

1. In Interface Builder, display the Attributes view of the
EODisplayGroup Inspector and check “Validate immediately”.

2. In your enterprise object class, implement validate Property to check
the value of the key for which the user is entering a value. For
example, if the key is salary , you’d implement the method
validateSalary .

If validateSalary fails (that is, if the salary value isn’t within acceptable
bounds), the user is forced to correct the value before being allowed to
leave the field.

Note that in this scenario, validateValueForKey is invoked with values
directly from the user interface. When validateValueForKey is invoked
from validateForSave , validateForInsert , or validateForUpdate , it’s invoked
with values that are already in the object.
92

Implementing an Enterprise Object
Creating and Inserting Objects
In an Enterprise Objects Framework application, when new enterprise
objects are inserted into the database, it’s often through a display
group—either an EODisplayGroup for Application Kit and Java client
applications or a WODisplayGroup for WebObjects applications
(assuming the application has a graphical user interface). However, it’s
also common to create and insert an enterprise object programmatically—
either because your application doesn’t have a graphical user interface, or
because you’re creating and inserting objects as the by-product of another
operation.

To create an instance of a custom Java enterprise object class, you invoke
a constructor of the following form:

public MyCustomEO (
EOEditingContext anEOEditingContext,
EOClassDescription anEOClassDescription,
EOGlobalID anEOGlobalID)

Typically you invoke this constructor with null arguments as follows:

rental = new MyCustomEO(null, null, null);

You can provide real values, but most enterprise object classes don’t make
use of the arguments. The only common exception to this is
EOGenericRecord, which requires the arguments to identify the object’s
class description. EOGenericRecord is handled in a different way, as
described later in this section.

In Objective-C, you use alloc and init like you would with any other
object, so you don’t have to worry about providing arguments.

Once you create an object, you insert it into an EOEditingContext using
EOEditingContext’s insertObject method (insertObject: in Objective-C).
For example, the following code excerpts for the Customer class create
Fee and Rental enterprise objects as the by-product of a customer renting
a unit at a video store. Once the objects have been created, they’re
inserted into the current enterprise object’s EOEditingContext.
93

Chapter 3 Designing Enterprise Objects
In Java:

public void rentUnit(Unit unit)
{

EOEditingContext ec;
Fee fee;
Rental rental;

ec = editingContext();

// Create new objects and insert them into the editing
context

fee = new Fee(null, null, null);
ec.insertObject(fee);
rental = new Rental(null, null, null);
ec.insertObject(rental);

// Manipulate relationships
rental addObjectToBothSidesOfRelationshipWithKey(fee,

"fees");
rental.addObjectToBothSidesOfRelationshipWithKey(unit,

"unit");
addObjectToBothSidesOfRelationshipWithKey(rental,

"rentals");
}

In Objective-C:

- (void)rentUnit:(Unit *)unit
{

EOEditingContext *ec;
Fee *fee;
Rental *rental;

ec = [self editingContext];

// Create new objects and insert them into the editing
context

fee = [[[Fee alloc] init] autorelease];
[ec insertObject:fee];
rental = [[[Rental alloc] init] autorelease];
[ec insertObject:rental];

[rental addObject:fee
toBothSidesOfRelationshipWithKey:@"fees"];

[rental addObject:unit
toBothSidesOfRelationshipWithKey:@"unit"];

[self addObject:rental
toBothSidesOfRelationshipWithKey:@"rentals"];

}

94

Implementing an Enterprise Object
EOEditingContext’s insertObject method has the effect of registering the
specified enterprise object with the editing context. In other words, it
registers the object to be inserted in the database the next time the
editing context saves changes. Inserting a new object into an editing
context also has the side effect of further initializing the object, so you
should always insert new objects into an editing context before modifying
them (such as by manipulating their relationships). For more information,
see the section “Setting Defaults for New Enterprise Objects” on
page 98.

You create an instances of EOGenericRecord differently from the
way you create custom objects: To create a generic record, use
EOClassDescription’s createInstanceWithEditingContext method
(createInstanceWithEditingContext:globalID:zone: in Objective-C)
as follows:

In Java:

String entityName; // Assume this exists.
EOEditingContext editingContext; // Assume this exists.
EOClassDescription classDescription;
EOEnterpriseObject eo;

classDescription =
EOClassDescription.classDescriptionForEntityName(entityN
ame);

eo = classDescription.createInstanceWithEditingContext(
editingContext, null);

if (eo) editingContext.insertObject(eo);

In Objective-C:

NSString *entityName; // Assume this exists.
EOEditingContext *editingContext; // Assume this exists.
EOClassDescription classDescription;
id eo;

classDescription = [EOClassDescription
classDescriptionForEntityName:entityName];

eo = [classDescription
createInstanceWithEditingContext:editingContext
globalID:nil
zone:[editingContext zone]];

if (eo) [editingContext insertObject:eo];
95

Chapter 3 Designing Enterprise Objects
The EOClassDescription method createInstanceWithEditingContext
is preferable to using an EOGenericRecord constructor (or to using
EOGenericRecord’s init... method in Objective-C) because the same
code works if you later use a custom enterprise object class instead
of EOGenericRecord. Strictly speaking, it’s better to use
EOClassDescription’s createInstanceWithEditingContext for all types
of enterprise objects—EOGenericRecords as well as your custom classes.
The createInstanceWithEditingContext method is the most general way to
create an enterprise object—it works regardless of whether the object is
represented by a custom class or an EOGenericRecord.

Working with Relationships
In the code excerpt shown in the preceding section, notice that
before the objects are inserted into the EOEditingContext,
the method addObjectToBothSidesOfRelationshipWithKey
(addObject:toBothSidesOfRelationshipWithKey: in Objective-C) is used.
This method is part of the EORelationshipManipulation interface
(informal protocol in Objective-C). EORelationshipManipulation
provides methods for manipulating an enterprise object’s relationship
properties. It is a part of the EOEnterpriseObject interface, and so your
custom classes inherit a default implementation from EOCustomObject
(or NSObject in Objective-C).

addObjectToBothSidesOfRelationshipWithKey is used to manage
reciprocal relationships, in which the destination entity of a relationship
has a back reference to the source. For example, Fee and Unit both have
back references to Rental, and Rental has a back reference to Customer.
In other words, not only does the model define a relationship from
Customer to Fee and Rental, it also defines a relationship from Rental
back to Customer and from Fee to Rental. When you insert an object into
a relationship (such as adding a new Rental object to Customer’s rentals
relationship property, which is an NSArray) and the inserted object has a
back reference to the enterprise object, you need to be sure to add the
object to both sides of the relationship. Otherwise, your object graph will
get out of sync—your Customer object’s rentals array will contain the
Rental object, but the Rental object won’t know the Customer who
rented it.
96

Implementing an Enterprise Object
You can update object references explicitly—that is, you can directly
update the Rental object’s customer property, which represents its
relationship to the Customer object. But it’s simpler to just use
addObjectToBothSidesOfRelationshipWithKey . This method is safe to
use regardless of whether the source relationship is to-one or to-many,
whether the reciprocal relationship is to-one or to-many, or whether the
relationship is reciprocal at all.

You should observe the following guidelines in working with
relationships:

• For non-reciprocal relationships, you can just use your class’s
regular accessor methods. These methods have the form
addTo Property (addTo Property: in Objective-C) where Property
is a relationship array.

• When in doubt, use the method
addObjectToBothSidesOfRelationshipWithKey . This method works
for reciprocal and non-reciprocal relationships alike, and it’s the
safest choice if you don’t know ahead of time what objects your
code will be working with—for example, if you’re providing a
framework to be used by others.

• If you’re working with reciprocal relationships and you do know the
objects you’ll be working with ahead of time, the best choice is to
implement custom accessor methods in your enterprise object class
to handle the reciprocal relationships. Custom accessor methods
are preferable to addObjectToBothSidesOfRelationshipWithKey
simply because they provide type checking.

In addition to the addObjectToBothSidesOfRelationshipWithKey method,
EORelationshipManipulation defines the following methods:

• addObjectToPropertyWithKey
• removeObjectFromPropertyWithKey
• removeObjectFromBothSidesOfRelationshipWithKey

The method addObjectToPropertyWithKey
(addObject:toPropertyWithKey: in Objective-C) adds a specified object
to the relationship property (an NSArray) with the specified name (key).
97

Chapter 3 Designing Enterprise Objects
This method is the primitive used by
addObjectToBothSidesOfRelationshipWithKey .
The default implementation uses the class definition as follows:

1. If this method is passed the key projects , for example, the default
implementation looks for a method with the name addToProjects .

2. If the addToProjects method isn’t found,
addObjectToPropertyWithKey looks for a property called projects .
If it finds it, it adds the argument to the array (assuming the array
is mutable). If the array is immutable, it creates a new version of
the array that includes the new element.

3. If the property is null (nil in Objective-C), a new empty array
is created and assigned to the object.

The method removeObjectFromPropertyWithKey
(removeObject:fromPropertyWithKey: in Objective-C) removes
a specified object from the relationship property (an NSArray)
with the specified name (key).

This method follows the same pattern as addObjectToPropertyWithKey .
That is, it looks for a selector of the form removeFromProjects , and then
for a property called projects . If neither of these can be found, it throws
an exception. If it finds the property but it doesn’t contain the specified
object, this method simply returns.

The method removeObjectFromBothSidesOfRelationshipWithKey
(removeObject:fromBothSidesOfRelationshipWithKey: in Objective-C)
removes a specified object from both sides of a relationship property with
the specified name. Like addObjectToBothSidesOfRelationshipWithKey ,
this method is safe to use regardless of whether the source relationship is
to-one or to-many, or whether the reciprocal relationship is to-one or to-many.

Setting Defaults for New Enterprise Objects
When new objects are created in your application and inserted into the
database, it’s common to assign default values to some of their properties.
For example, the Member class has a memberSince property. It’s likely
that you would assign that property a value when you create and insert
a new object instead of forcing the user to supply a value for it.
98

Implementing an Enterprise Object
To assign default values to newly created enterprise objects,
you use the method awakeFromInsertionInEditingContext
(awakeFromInsertionInEditingContext: in Objective-C). This method
is automatically invoked immediately after your enterprise object class
creates a new object and inserts it into the EOEditingContext.

The following implementation of awakeFromInsertion in the Member
class sets the current date as the value of the memberSince property:

In Java:

public void awakeFromInsertion(EOEditingContext ec)
{

super.awakeFromInsertion(ec);
// Assign current date to memberSince
if (memberSince == null)

memberSince = new NSGregorianDate();
}

In Objective-C:

- (void)
awakeFromInsertionInEditingContext:(EOEditingContext
*)ec
{

[super awakeFromInsertionInEditingContext:ec];
// Assign current date to memberSince
if (!memberSince)

memberSince = [[NSCalendarDate date] retain];
}

You use the awakeFromInsertion method to set default values for
enterprise objects that represent new data. For enterprise objects that
represent existing data, the Enterprise Objects Framework provides
the method awakeFromFetch (awakeFromFetchInEditingContext: in
Objective-C), which is sent to an enterprise object that has just been
created from a database row and initialized with database values. Your
enterprise objects can implement this method to provide additional
initialization. Because the Framework is still busy fetching when an
enterprise object receives awakeFromFetch , the object must be careful
about sending messages to other enterprise objects that might need to be
faulted in. For more information about faulting, see the chapter “Behind
the Scenes” and the EOFaulting interface specification in the Enterprise
Objects Framework Reference.
99

Chapter 3 Designing Enterprise Objects
Initializing Enterprise Objects
Since all of an enterprise object’s class property values are assigned
through the key-value coding methods, no special initialization is usually
needed in your constructors (or init... methods in Objective-C).
Specifically, you don’t generally assign default values to your enterprise
objects in constructors since it is invoked to create instances of your class
being fetched from the database. Any values you assign in a constructor
will be overwritten by the values fetched from the database.

However you can take advantage of extra information available at the
time your enterprise object is initialized. In Java, instances of custom
classes must provide a constructor of the following form:

public MyCustomEO (
EOEditingContext anEOEditingContext,
EOClassDescription anEOClassDescription,
EOGlobalID anEOGlobalID)

The Framework uses such a constructor to create your objects, so you can
use the provided arguments to influence the creation. In Objective-C,
enterprise objects can be created with either init or
initWithEditingContext:classDescription:globalID: . If an enterprise object
implements the initWithEditingContext:classDescription:globalID:
method, the Framework uses this method instead of init , allowing the
object to affect its creation based on the data provided.

Writing Business Logic
So far the examples in this chapter have focused on working with your
enterprise objects in fairly simple ways: creating them, accessing their
data, modifying them, and validating changes before you save them to the
database. But enterprise object classes can also implement more
sophisticated business logic. For example, suppose you need a pay
method in your Fee class that sets the fee’s datePaid property and also
notifies the fee’s rental that the fee has been paid. You could implement
this as follows:
100

Gotchas
In Java:

public void pay()
{

setDatePaid(new NSGregorianDate());

// Notify the rental that this fee has been paid.
rental.feePaid();

}

In Objective-C:

- (void)pay
{

[self setDatePaid:[[NSCalendarDate calendarDate]
retain];

// Notify the rental that this fee has been paid.
[rental feePaid];

}

When you implement a method such as this in your enterprise object
class, you don’t have to be concerned with registering the changes or
updating the values displayed in the user interface. An Enterprise
Objects Framework application revolves around the graph of enterprise
objects, and the Framework assumes responsibility for making sure that
all parts of your application are notified when an object’s value changes.
Thus, all parts of your application have the same view of the data and
remain in sync.

Gotchas

This section discusses some of the more subtle issues you need to be
aware of in designing enterprise objects.

Constructor for Creating Enterprise Objects
Your Java custom enterprise object classes must provide a constructor
of the following form:

public MyCustomEO (
EOEditingContext anEOEditingContext,
EOClassDescription anEOClassDescription,
EOGlobalID anEOGlobalID)
101

Chapter 3 Designing Enterprise Objects
Enterprise Objects Framework uses this constructor to create instances of
your custom classes, and it throws an exception if it doesn’t find such a
constructor.

Numeric Values and NULL
An important issue to consider in using scalar types is that relational
databases allow the use of a NULL value distinct from any numeric
value. When a NULL value is encountered in takeValueForKey
(takeValue:forKey: in Objective-C), your enterprise object will be passed
null (nil in Objective-C). Since the scalar types can’t accommodate null ,
the default implementations of the key-value coding methods throw an
exception when asked to assign null to a scalar property. You should either
design your database not to use NULL values for numeric columns, use
Number to represent scalar values in your enterprise class (NSNumber in
Objective-C), or implement the method unableToSetNullForKey
(unableToSetNilForKey: in Objective-C) method in your enterprise object
class.

unableToSetNullForKey is part of the EOKeyValueCoding interface, and
you use it to set policy for an attempt to assign null to an instance variable
that requires a scalar type. Classes can implement this method to
determine the behavior when null is assigned to a property in an
enterprise object that requires a scalar type (such as int or double). One
possible implementation is to reinvoke takeValueForKey with a special
constant value.

Cautions in Implementing Accessor Methods
Whether you’re implementing accessor methods to be used by the key-
value coding methods or overriding the key-value coding methods
themselves, you need to be aware of a few issues. The first involves
handling NULL values from the database; the second involves accessing
property values while they’re being set.
102

Gotchas
NULL values in a database come into the access layer as EONullValue
objects (EONull objects in Objective-C), but they’re converted to null
(or nil in Objective-C) before they’re passed to your enterprise objects.
The preceding section described how this scheme can cause problems for
properties with numeric types, but they can cause problems for other
property types as well. If your database uses NULL values, your
enterprise objects may want to check any object values received through
accessor methods to see that they’re not null (or nil) before sending them
messages.

You can encounter another kind of problem if your object’s accessor
methods for one property assume that another property has already been
set and exists in usable form. Enterprise Objects Framework doesn’t
guarantee the order that properties are set, so your object’s accessor
methods can’t count on the values of other properties being initialized or
usable. Also, when the Framework creates an enterprise object, it creates
faults for related objects, and these faults can be passed to your enterprise
objects in a key-value coding message while the Framework is busy
fetching. Your accessor methods (or overridden key-value coding
methods) should be doubly careful about sending messages to objects
fetched through relationships, because these messages can cause a fault
object to attempt a fetch while the Framework is already busy, resulting
in resource contention.

In most cases, you can overcome this problem using the stored value
methods described in the section “Private Access with the Stored Value
Methods.”

Don’t Override equals
Your enterprise objects shouldn’t override the equals method (isEqual: in
Objective-C). This is because Enterprise Objects Framework relies on
the default implementation to check instance equality rather than value
equality.
103

Advanced Enterprise
Object Modeling

Chapter 4

This chapter discusses advanced enterprise object modeling issues not
covered in the chapter “Designing Enterprise Objects.” It is organized
into the following sections:

• “Modeling Complex Attributes” (page 107) describes how
to work with RTF text, image data, and your own custom
data types.

• “Modeling Relationships” (page 114) describes approaches for
modeling optional to-one relationships, handling null -valued
to-one relationships, and modeling many-to-many relationships.

• “Modeling Inheritance” (page 124) describes the three ways
to model inheritance and the advantages and disadvantages
of each.

• “Designing Database-Savvy Enterprise Objects” (page 135)
describes how to implement an enterprise object class that
knows how to fetch its instances.

Modeling Complex Attributes

When you create a new model, EOModeler provides a default
mapping from external database data types to one of the primitive
value classes:

For example, in Oracle, VARCHAR columns are mapped to Strings,
DATE columns are mapped to NSGregorianDates, and so on.

Java Objective-C

String NSString

BigDecimal (java.math) NSDecimalNumber

Number NSNumber

NSGregorianDate NSCalendarDate

NSData NSData
107

Chapter 4 Advanced Enterprise Object Modeling
The default mapping is appropriate for most data types, but you have
to customize the mapping for attributes with special requirements.

For example, suppose you have a photo attribute that’s stored in the
database as a LONG RAW (an Oracle data type). When you create a new
model, this attribute is mapped to an NSData. However, NSData is just
an object-oriented wrapper for binary data—it doesn’t have any methods
for operating on images, which limits what you’d be able to do with the
image in your application. So, for example, in an Application Kit
application, you could customize the default behavior and map
photo to an NSImage instead.

This section describes how to work with complex attributes such as RTF
text, images, and custom data types. Of these attributes, RTF text is the
easiest to handle. You don’t have to change the default mapping at all, but
you have to use special interface objects to display the RTF text.

For images and custom data types, you must customize the default
mapping to map to a “non-primitive” class. To map to an existing class
(such as NSImage for image attributes), you simply specify additional
mapping information in EOModeler. You do the same work in
EOModeler to use a custom class. However, you must also provide
methods for translating instances of your class to instances of the
primitive value classes.

RTF Text
RTF text is one type of data that is commonly stored in NSDatas. In the
database, store RTF data in a binary data type such as Oracle’s LONG
RAW; and in your enterprise object, store it in an NSData instance
variable. EOModeler automatically maps binary data types to NSData,
so the default mapping is correct for RTF attributes.
108

Modeling Complex Attributes
Figure 21. Model Settings for an RTF Text Attribute

For Application Kit applications, Enterprise Objects Framework
provides the EOTextAssociation class that extracts RTF text from an
NSData object and displays it in an NSTextView object. To display
an RTF text attribute in an Application Kit user interface, use
Interface Builder to make a connection from a text object to your
EODisplayGroup.

Note: Click in the text area to select the NSTextView before you
control-drag to form the association. Unless the cursor is in the text area,
control-dragging from the text area forms a connection from the text’s
super view, an NSScrollView. To be sure that the NSTextView is
selected, open the inspector and check that it’s displaying the
NSTextView Inspector.

You probably wouldn’t use RTF-formatted text in a WebObjects of Java
client application. If you have RTF-formatted text that you want to use
in a web application, the best approach is probably to filter the text to
another format (such as plain text or HTML) before displaying it in a
web page.
109

Chapter 4 Advanced Enterprise Object Modeling
Images
You can store image data in a binary data type (for example, LONG RAW
in Oracle or image in Sybase) in the database. Alternatively, you can store
the path name to an image file in the file system. This second approach is
often times more practical for web applications.

When you store image data in the database itself, Enterprise Objects
Framework initially maps it to an NSData object. Depending on the type
of application you’re writing—WebObjects or Application Kit —you can
leave the image as an NSData, or you can further map the NSData to an
NSImage object.

Image data formats (EPS, BMP, and GIF, for example) are usually
different for WebObjects and Application Kit applications. In a
WebObjects application, you generally work with GIF and JPEG images;
whereas Application Kit applications typically use EPS, TIFF, and BMP
images.

There are numerous techniques for displaying images in a WebObjects
application, so how you display them is up to you. (For more information,
see the “Dynamic Elements Reference” in the WebObjects documentation
set.) However, most of the approaches use binary image data, so it’s
customary to model image attributes as NSDatas when you’re designing
an enterprise object for use in a web application. If you store images in
a binary column in the database, you can then simply use EOModeler’s
default mapping.

In an Application Kit application, model an enterprise object’s image as
an NSImage. In the EOModeler’s Attribute Inspector:

1. Set the Internal Data Type pop-up list to Custom.

2. In the Class field, specify NSImage as the custom class.

3. In the Factory Method field, specify imageWithData: as the method
to use to create NSImage instances.
110

Modeling Complex Attributes
4. In the Conversion Method field, specify TIFFRepresentation as the
method to use to convert NSImages into a form that can be stored
in the database.

5. Set the Init Argument pop-up list to NSData, indicating that the
argument to the factory method (imageWithData:) is an NSData
object.

Figure 22. Model Settings for an Image Attribute in an Application Kit Application

To display an image attribute in an Application Kit user interface,
make an EOControlAssociation from an NSImageView object to your
EODisplayGroup.

Custom Data Types
In addition to supporting RTF text and image data, Enterprise Objects
Framework also provides support for mapping attributes to custom
objects. In other words, you can map an attribute to an Objective-C class
that you have written—PhoneNumber, for example.
111

Chapter 4 Advanced Enterprise Object Modeling
Enterprise Objects Framework maps attributes to a custom object
using the same mechanism that it uses to map attributes to NSImages.
In EOModeler’s Attribute Inspector:

1. Set the Internal Data Type pop-up list to Custom.

2. If relevant, specify an external width in the External Width field.

Binary data types such as Oracle’s LONG RAW don’t usually have
width constraints. However, string columns such as VARCHARs
often do have widths that you should enter.

3. In the Class field, specify the name of your custom class.

4. In the Factory Method field, specify the method to use to create
instances of your class.

This method should have one argument whose type matches the
type specified in the Init Argument pop-up list.

5. In the Conversion Method field, specify the method to use to
convert instances of your class into a form that can be stored in the
database.

This method should return an NSData object if the Init Argument
type is NSData or Bytes, otherwise it should return an NSString.

6. Set the Init Argument pop-up list to indicate the data type
(NSData, NSString, or Bytes) for the factory method’s argument.

As an example, you might use the settings shown in Figure 23 for
a PhoneNumber class.
112

Modeling Complex Attributes
Figure 23. Attribute Settings For a Custom Data Type

Using the mapping information in Figure 23, Enterprise Objects
Framework fetches the phoneNumber attribute from the database, maps
it to an NSString object, creates a PhoneNumber object using the
PhoneNumber class method phoneNumberWithString: , and assigns the
PhoneNumber object to its enterprise object. Similarly, Enterprise
Objects Framework converts the PhoneNumber object to an NSString
using the phoneNumberAsString method before saving it to the database.

Note: You can also use a Java custom value class. If you do, set the
Factory Method to a static method in your custom class that creates
instances. Also, the Init Argument must be set to either NSData or
NSString (which is mapped to java.lang.String); it can’t be set to bytes.

For more information on using custom data types, see the EOAttribute
class specification in the Enterprise Objects Framework Reference.
113

Chapter 4 Advanced Enterprise Object Modeling
Modeling Relationships

How you model relationships is perhaps the most complex and
interesting part of a database-to-objects mapping. This section
describes some of the finer points of relationship modeling.

Modeling Optional To-One Relationships
A to-one relationship is optional if the relationship’s destination object
can be null (nil in Objective-C). For example, a Member entity’s
creditCard relationship is optional if a Member object isn’t required
to have a CreditCard object.

Note: Occasionally, a mandatory to-one relationship doesn’t resolve to
a destination object. For example, suppose your application’s Movie
database contains legacy data for which relational integrity constraints
weren’t strictly enforced. As a result, some Movies don’t have
corresponding Studios even though the Movies-to-Studios relationship
is mandatory. The techniques for handling these errant to-one
relationships are the same as those for handling optional to-one
relationships.

You can model an optional to-one relationship many different ways,
depending on how you represent the relationship in the database—as
a foreign key to primary key join or as a primary key to primary key join.

Note: For to-one relationships, Enterprise Objects Framework doesn’t
support primary key to foreign key joins. The destination join attribute
in a to-one relationship must be the destination entity’s primary key.
114

Modeling Relationships
Using a foreign key to primary key join, you include the destination row’s
primary key in the source row. For example, in the relationship shown
in Figure 24, the creditCard relationship’s source table (MEMBER)
has a foreign key (CARD_NUMBER) to the destination table
(CREDIT_CARD). Using this approach, you can model an optional
to-one relationship as a true to-one relationship just as you would model
a mandatory to-one relationship.

Figure 24. Storing a Foreign Key in the Source Table

A foreign key to primary key join is the best way to model a to-one
relationship for use with Enterprise Objects Framework. If you have
control over the design of the database schema, use foreign key to
primary key joins for to-one relationships whenever possible.

Alternatively, you can use a primary key to primary key join that includes
the source’s primary key in the destination table. For example, in the
relationship shown in Figure 25, the talentPhoto relationship’s
destination table (TALENT_PHOTO) has a foreign key
(TALENT_ID) to the source table (TALENT).

Member CreditCard
creditCard

111 NULL

105 379

97 381

MEMBER CREDIT_CARD

CARD_NUMBER CARD_TYPE

379 VISA

381 AMEX

CUSTOMER_ID CARD_NUMBER
115

Chapter 4 Advanced Enterprise Object Modeling
For reasons described below, this arrangement requires special handling.

Figure 25. Storing a Foreign Key in the Destination Table

When Enterprise Objects Framework fetches an enterprise object, it
attempts to assign destination objects to any of the object’s to-one
relationships. If a destination object hasn’t already been fetched,
Enterprise Objects Framework creates a fault to stand in for the
destination object until it is actually needed. (For more information on
faulting, see the chapter “Behind the Scenes” on page 187.)

The exception to this is when the relationship is based on a foreign key
to primary key join and the relationship’s source object doesn’t have a
corresponding destination. Instead of creating a fault, Enterprise Objects
Framework assigns null (or nil in Objective-C) to the source object’s
relationship property. For example, if a Member doesn’t have a
corresponding CreditCard, the corresponding MEMBER record’s
CARD_NUMBER value is NULL. When Enterprise Objects
Framework sees the null-valued CARD_NUMBER attribute, it sets the
Member’s creditCard property to null .

On the other hand, Enterprise Objects Framework can’t detect that a
primary key to primary key relationship doesn’t have a destination.
For example, Enterprise Objects Framework can’t tell that a TALENT

Talent TalentPhoto
talentPhoto

672 Stephen . . .

237 George . . .

TALENT TALENT_PHOTO

TALENT_ID PHOTO

237 . . .

672 . . .

TALENT_ID FIRST_NAME
116

Modeling Relationships
record doesn’t have a corresponding TALENT_PHOTO record until it
tries to fetch a TALENT_PHOTO with the same TALENT_ID value
and fails. Consequently, in a primary key to primary key relationship,
Enterprise Objects Framework always assigns a fault if a corresponding
destination object hasn’t been fetched. If no such destination exists,
Enterprise Objects Framework throws an exception when it tries to
resolve the fault.

An optional primary key to primary key relationship (such as talentPhoto)
can be handled in a number of ways:

• Model the relationship as a mandatory to-one, but allow the destination
entity to have null -valued attributes. For example, assume that a
relationship between Customers and Addresses is optional. To
model the relationship as a mandatory to-one, Customers who don’t
provide their Addresses have corresponding Address objects with
null -valued streetAddress , city , state , and zip attributes. The
Customers also have Address rows in the database, but the Address
rows contain NULLs in all the columns except the primary key
column (whose value matches that of the corresponding
Customer).

This approach is a good choice when the destination object
contains what are conceptually attributes of the source object.
For example, conceptually photo is an attribute of a Talent object.
It’s implemented using a to-one relationship for performance
reasons. (Photo data is very large, and isn’t fetched unless—and
until—it’s needed.)

• Model the relationship as a to-many. This approach is useful when you
think that a to-one relationship may evolve into a to-many
relationship in the future. For example, current requirements for
a Movie application specify that a Talent object may only have one
photo. However, the requirements for the next version of the
application mention a Talent’s portfolio.

• Handle the exception thrown by faults that don’t correspond to a
destination object. This approach is probably the best for handling
optional to-one relationships based on primary key to primary key
joins.
117

Chapter 4 Advanced Enterprise Object Modeling
• Implement the delegate method databaseContextFailedToFetchObject
(databaseContext:failedToFetchObject:globalID: in Objective-C).
This approach is best for handling mandatory to-one relationships
with errant data (source rows that don’t have corresponding
destinations).

The following sections describe each approach.

Use a Mandatory To-One Relationship
This approach is used for the Movies database to model Talent’s
talentPhoto relationship. Although a Talent object doesn’t have to have a
photo, it does have to have a corresponding TalentPhoto object. As shown
in Figure 26, a Talent object that doesn’t have a photo has a TalentPhoto
object whose photo attribute is null (nil in Objective-C).

Figure 26. A Destination Object with null -Valued Attributes

This approach doesn’t require any code. In the Advanced Relationship
Inspector for the Talent entity’s talentPhoto relationship, you simply set
the relationship to propagate primary key. Propagate primary key tells
Enterprise Objects Framework to propagate the primary key of the
source entity into newly inserted objects in the destination entity (instead
of generating a primary key value for the destination). With this
configuration, Enterprise Objects Framework inserts a new Talent
object, it inserts a corresponding TalentPhoto object if the Talent object
doesn’t already have one assigned to it.

Use a To-Many Relationship
To-many relationships use a different faulting mechanism than to-ones.
A fault for a to-many relationship replaces itself with an NSArray of
corresponding destination objects, and it doesn’t throw an exception if it
doesn’t find any. If you use a to-many relationship to model an optional

NSImage photo=nullTalentPhotoTalent
talentPhoto
118

Modeling Relationships
to-one and no destination object exists, the array is simply empty. If the
relationship does have a destination object, it’s the first and only object in
the array.

You can design your enterprise object’s API to hide the to-many
implementation. For example, suppose that Talent’s talentPhoto
relationship was modeled as a to-many. To design a Talent enterprise
object that acts as if its talentPhoto relationship is an optional to-one, you
could name the to-many relationship (and the corresponding instance
variable) “_talentPhotoArray” and implement the following two accessor
methods:

In Java:

public void setTalentPhoto(TalentPhoto talentPhoto)
{

willChange();
_talentPhotoArray.removeAllObjects();
if (talentPhoto != null)

_talentPhotoArray.addObject(talentPhoto);
}

public TalentPhoto talentPhoto()
{

willRead();
if (_talentPhotoArray.count() > 0)

return _talentPhotoArray.objectAtIndex(0);
return null;

}

In Objective-C:

- (void)setTalentPhoto:(TalentPhoto *)talentPhoto
{

[self willChange];
[_talentPhotoArray removeAllObjects];
if (_talentPhotoArray)

[_talentPhotoArray addObject:talentPhoto];
}

- (id)talentPhoto
{

if ([_talentPhotoArray count])
return [_talentPhotoArray objectAtIndex:0];

return nil;
}

119

Chapter 4 Advanced Enterprise Object Modeling
Handle the Exception
You can use a to-one relationship if you handle any exceptions that are
thrown when a fault doesn’t resolve to a destination object. For example,
in the Talent enterprise object, you would implement the talentPhoto
relationship “get” method as follows:

In Java:

public TalentPhoto talentPhoto()
{

try {
// If the receiver is a fault, sending it a willRead
// message attempts to resolve it. If the
// corresponding row doesn’t exist in the database,
// an exception is thrown.
talentPhoto.willRead();

} catch (NSException e) {
talentPhoto = null;

}

return talentPhoto;
}

In Objective-C:

- (TalentPhoto *)talentPhoto
{

NS_DURING
// If the receiver is a fault, sending it a self
// message attempts to resolve it. If the
// corresponding row doesn’t exist in the database,
// an exception is raised.
[talentPhoto self];

NS_HANDLER
[talentPhoto autorelease];
talentPhoto = nil;

NS_ENDHANDLER

return talentPhoto;
}

Sending willRead (or self in Objective-C) to a fault triggers it to fetch
its corresponding enterprise object. If a Talent instance doesn’t have a
corresponding TalentPhoto, sending willRead to the talentPhoto property
throws an exception. In the talentPhoto method above, the exception
handler simply sets the property to null (first autoreleasing the talentPhoto
fault in Objective-C).
120

Modeling Relationships
Implement databaseContextFailedToFetchObject
With the EODatabaseContext delegate method
databaseContextFailedToFetchObject
(databaseContext:failedToFetchObject:globalID: in Objective-C),
you can prevent an exception from being thrown when a fault doesn’t
resolve to a destination object. This method is invoked when a fault
for a to-one relationship can’t find its corresponding object in the
database. By returning false (NO in Objective-C), you can prevent
the EODatabaseContext from raising an exception.

For example, to handle mandatory to-one relationships with errant data
(source rows that don’t have corresponding destinations), you could
implement the delegate method to insert the empty object, thereby
supplying the missing destination object:

In Java:

public boolean databaseContextFailedToFetchObject(
EODatabaseContext context,
Object object,
EOGlobalID gid)

{
// Perform a check to determine whether to intervene
if (...) {

// Set values in your object (if necesssary).
object.editingContext().insertObject(object);
return false;

}
return true;

}

In Objective-C:

- (BOOL)databaseContext:(EODatabaseContext *)context
failedToFetchObject:(id)object
globalID:(EOGlobalID *)gid

{
// Perform a check to determine whether to intervene
if (...) {

// Set values in your object (if necesssary).
[[object editingContext] insertObject:object];
return NO;

}
return YES;

}

In the above implementations, the delegate method first checks to see if
it should intervene. For example, the method might check to see if object
121

Chapter 4 Advanced Enterprise Object Modeling
is an instance of the TalentPhoto class. If the delegate determines that
object represents a destination object that’s missing from the database,
the delegate queues object for insertion into the database by inserting it
into its editing context. It returns false (NO in Objective-C) indicating
that the delegate has handled the error and that the EODatabaseContext
shouldn’t throw an exception.

Modeling Many-To-Many Relationships
To model a many-to-many relationship between objects is simple: each
object manages a collection of the other kind. For example, consider the
many-to-many relationship between employees and projects. To model
this relationship in objects, an Employee has an NSArray, projects , of all
the projects he or she works on; and a Project class has an NSArray,
employees , of all its members.

To model a many-to-many relationship in a database, you have to
create an intermediate table (also known as a correlation or join table).
For example, the database for employees and projects might have
EMPLOYEE, PROJECT, and EMP_PROJ tables, where EMP_PROJ
is the correlation table. The appendix “Entity-Relationship Modeling”
provides more information on the tables behind a many-to-many
relationship.

Given the relational database representation of a many-to-many, how do
you get the object model you want? You don’t want to see evidence of the
correlation table in your object model, and you don’t want to write code
to maintain database correlation rows. With Enterprise Objects
Framework, you don’t have to. Simply use flattened relationships as
described in the chapter “Using EOModeler” to hide your correlation
tables.

A model with the following features has the effect of hiding the
EMP_PROJ correlation table from its object model altogether:

• Employee and Project entities whose to-many relationships to the
EmpProj entity (toEmpProj) are not class properties.

• The flattened relationships projects and employees in Employee
and Project, respectively, are class properties.
122

Modeling Relationships
Consequently, EmpProj enterprise objects are never created, Employees
have an array of related Projects, and Projects have an array of related
Employees. Furthermore, Enterprise Objects Framework automatically
manages rows in the EMP_PROJ correlation table.

However, what do you do when a correlation table contains extra
attributes that are interesting? For example, the MOVIE_ROLE table
in the sample Movies database is a correlation table between movies
and the actors who star in them. In addition to foreign keys for MOVIE
and TALENT, the MOVIE_ROLE table also contains the name of the
role the actor plays in the film. In this case, MovieRole enterprise objects
actually have a place in the object model even though they’re fetched
from a correlation table.

If you want to programmatically access both a Movie’s roles and its actors
directly from the Movie object, you should do the following:

1. Create a movieRole relationship from Movie to MovieRole and set
it to be a class property.

2. Create a talent relationship from MovieRole to Talent.

3. Define an actors method in the Movie class that returns the Talent
objects by getting them from the corresponding MovieRoles.

Because MovieRole corresponds to a data-bearing correlation table,
you shouldn’t create a flattened relationship from Movie to Talent.
If your application fetches correlation records as enterprise objects,
consistency problems can arise if it also manages a flattened relationship.
For example, suppose you did flatten the talent relationship into the
Movie entity. Movie objects would then have an array of MovieRole
objects and an array of Talent objects. If your application adds a new
MovieRole to a Movie’s roles array, the corresponding actors array doesn’t
reflect the addition until the new MovieRole is saved to the database and
the Movie is refetched.

Instead, if you create an actors method that traverses the object graph
through the Movie’s MovieRole objects, you avoid any consistency
problems.
123

Chapter 4 Advanced Enterprise Object Modeling
For display purposes, you don’t even need an accessor method to bypass
a correlation object. Instead, you can use key paths. For example, you can
use the key path roles.talent to access a Movie’s Talent objects in a
master-detail configuration between a Movie EODisplayGroup and
a Talent EODisplayGroup.

Modeling Inheritance

One of the issues that may arise in designing your enterprise objects—
whether you’re creating your schema from scratch or working with an
existing database—is the modeling of inheritance relationships.

In object-oriented programming, when a subclass inherits from a
superclass, the instantiation of the subclass implies that all the superclass’
data is available for use by the subclass. When you instantiate objects of
a subclass from database data, all database tables that contain the data
held in each class (whether subclass or superclass) must be accessed so
that the data can be retrieved and put in the appropriate enterprise
objects.

Even in the simplest scenario in which there is a one-to-one mapping
between a single database table and an enterprise object, the database
and the enterprise objects instantiated from its data have no knowledge
of each other. Their mapping is determined by an EOModel. Likewise,
inheritance relationships between enterprise objects and the mapping
of those relationships onto a database are also managed by an EOModel.

Note: Enterprise Objects Framework doesn’t support mapping
inheritance hierarchies across tables in separate databases. Instead, you
can set up groups of objects connected by cross-database relationships,
where related objects forward messages to each other.
124

Modeling Inheritance
Types of Inheritance
Suppose you’re designing an application that includes Employee
and Customer objects. Employees and customers share certain
characteristics, such as a name and address, but they also have
specialized characteristics. For example, an employee has a salary
and a department, and a customer has account information.

Based on these data requirements, you might design a class hierarchy that
has a Person class, and Employee and Customer subclasses. As subclasses
of Person, Employee and Customer inherit Person’s attributes (name and
address), but they also implement attributes and behaviors that are
specific to their classes.

Figure 27. Class Hierarchy

In addition to designing your class hierarchy, you need to decide how
to structure your database so that when objects of the classes are
instantiated, the appropriate data is retrieved. Some of the issues you
need to weigh in deciding on an approach are:

• Are fetches usually directed at the leaves or the root of the class
hierarchy?

When a class hierarchy is mapped onto a relational database,
data is accessed in two different ways: By fetching just the leaves

Employee Customer

Person
firstName
lastName

currentOrder
previousOrder

salary
manager
project
125

Chapter 4 Advanced Enterprise Object Modeling
(for example, just Employee or Customer), and by fetching at the
root (Person) to get instances of all levels of the class hierarchy
(Employees and Customers).

• How deep is the class hierarchy?

While deep class hierarchies can be a useful technique in
object-oriented programming, you should try to avoid them for
enterprise objects. When you attempt to map a deep class
hierarchy onto a relational database, the result is likely to be poor
performance and a database that’s difficult to maintain.

• What is the database storage cost for NULL attributes?

• Will I need to modify my schema on an ongoing basis?

• Will other tools be accessing the database?

• Do I need to use inheritance at all?

The primary consideration in deciding whether to use inheritance is if
you’ll ever need to perform a deep fetch. In an inheritance hierarchy,
fetching just objects of a particular class is a shallow fetch, while fetching
all instances of a class and its subclasses is a deep fetch. For example,
even if the Objective-C classes for Customer and Employee inherit from
Person, if your application never performs a fetch for “all people
including Customers and Employees,” then there is no need to tell
Enterprise Objects Framework about your class hierarchy.

Enterprise Objects Framework supports the three primary approaches for
mapping inheritance hierarchies to database tables:

• Vertical mapping
• Horizontal mapping
• One table mapping

These approaches, along with the advantages and disadvantages of each,
are discussed in the following sections. None of them represents a perfect
solution—which one is appropriate depends on the needs of your
application.
126

Modeling Inheritance
Vertical Mapping
In this approach, each class has a separate table associated with it.
There is a Person table, an Employee table, and a Customer table;
each table contains only the attributes defined by that class.

Figure 28. Vertical Inheritance Mapping

This method of storage directly reflects the class hierarchy. If an object of
the Employee class is retrieved, data for the Employee’s Person attributes
must be fetched along with Employee data. The relationship between
Employee and Person is resolved through a join to give Employee access
to its Person data. This is also true for Customer.

id

last_name
first_name

PERSON

id
current_order

previous_order

CUSTOMERid

project

salary
manager

EMPLOYEE

Employee Customer

Person
127

Chapter 4 Advanced Enterprise Object Modeling
Creating an EOModel for Vertical Mapping
Assuming that the entities for each of the participating tables already
exist, you do the following to implement vertical mapping in your
EOModel:

1. Create a to-one relationship from each of the child entities
(Employee and Customer) to the parent entity (Person) joining
on the primary keys, and set it so it isn’t a class property.

2. Flatten the Person parent attributes into each child entity
(Employee and Customer) setting them as class properties
if they are class properties in Person.

3. Flatten the Person parent entity’s relationships into each child
entity (Employee and Customer), setting them as class properties
if they are class properties in Person.

4. Set the parent entity for each child entity (Employee and
Customer) to Person.

5. In the Advanced Entity Inspector, set the Person parent entity
to be abstract if you won’t ever instantiate instances of Person.

Advantages
With vertical mapping, a subclass can be added at any time without
modifying the Person table. Existing subclasses can also be modified
without affecting the other classes in the class hierarchy. The primary
virtue of this approach is its clean, “normalized” design.

Disadvantages
Vertical mapping is the least efficient of all of the approaches. Every layer
of the class hierarchy requires a join to resolve the relationships. For
example, if you want to do a deep fetch from Person, three fetches are
performed: a fetch from Employee (with a join to Person), a fetch from
Customer (with a join to Person), and a fetch from Person to retrieve all
the Person attributes. (If Person is an abstract superclass for which no
objects are ever instantiated, the last fetch is not performed.)
128

Modeling Inheritance
Horizontal Mapping
In this approach, you have separate tables for Employee and Customer
that each contain columns for Person. The Employee and Customer
tables contain not only their own attributes, but all of the Person
attributes as well. If instances of Person exist that are not classified as
Employees or Customers, a third table would be required (where Person
is not an abstract class). In other words, with horizontal mapping every
concrete class has a self-contained database table that contains all of the
attributes necessary to instantiate objects of the class.

Figure 29. Horizontal Inheritance Mapping

This technique entails the same fetching pattern as vertical mapping,
except that no joins are performed.

id
last_name

project

salary
manager

first_name

EMPLOYEE

id
last_name

current_order
previous_order

first_name

CUSTOMER

Employee Customer

Person
129

Chapter 4 Advanced Enterprise Object Modeling
Creating an EOModel for Horizontal Mapping
To implement horizontal mapping, you do the following in your
EOModel:

1. If a Person entity doesn’t already exist, create one. (If there isn’t
a database table exclusively for Persons who aren’t Employees or
Customers, EOModeler doesn’t automatically create an entity for
Person.)

2. Set Person as the parent entity of Employee and Customer.

3. In the Advanced Entity Inspector, set the parent entity to be
abstract if you never fetch Person objects that aren’t Employees
or Customers (you never instantiate instances of Person). Under
horizontal mapping, if Person doesn’t have its own table, then it’s
an abstract entity.

Unlike vertical mapping, you don’t need to flatten any of Person’s
attributes into Employee and Customer since they already include all
of its attributes.

Advantages
Similar to vertical mapping, a subclass can be added at any time without
modifying other tables. Existing subclasses can also be modified
without affecting the other classes in the class hierarchy.

This approach works well for deep class hierarchies, as long as the fetch
occurs against the leaves of the class hierarchy (Employee and Customer)
rather than against the root (Person). In the case of a deep fetch, it’s more
efficient than vertical mapping (since no joins are performed). It’s the
most efficient approach, if you only fetch instances of one leaf subclass
at a time.

Disadvantages
Problems may occur when attributes need to be added to the Person
superclass. The number of tables that need to be altered is equal to the
number of subclasses—the more subclasses you have, the more effort
is required to maintain the superclass. However, if table maintenance
happens far less often than fetches, this might be a viable approach for
your application.
130

Modeling Inheritance
Single Table Mapping
In this approach, you put all of the data in one table that contains all
superclass and subclass attributes. Each row contains all of the columns
for the superclass as well as for all of the subclasses. The attributes that
don’t apply for each object have NULL values. You fetch an Employee
or Customer by using a query that just returns objects of the specified
type (the table would probably include a type column to distinguish
records of one type from the other).

Figure 30. Single Table Mapping

id

person_type

first_name

PERSON

last_name

manager

project

current_order

previous_order

salary

Employee Customer

Person
131

Chapter 4 Advanced Enterprise Object Modeling
Creating an EOModel for Single Table Mapping
To implement a single table mapping, you do the following in your
EOModel:

1. Add Employee and Customer entities to your model. (You can
use EOModeler’s Create Subclass command for this purpose.)

2. Set Person as the parent entity of Employee and Customer.

3. In the Advanced Entity Inspector, assign a restricting qualifier to
the Employee entity that distinguishes its rows from the rows of
other entities. Similarly, assign a restricting qualifier to the
Customer entity.

4. In the Advanced Entity Inspector, set the Person entity to be
abstract if you won’t ever instantiate Person instances.

Unlike vertical mapping, you don’t need to flatten any of Person’s
attributes into Employee and Customer since these entities already
have all of Person’s attributes.

Each sub-entity maps to the same table and contains attributes only for
the properties that are relevant for that class.

Advantages
This approach is faster than the other two methods for deep fetches.
Unlike vertical or horizontal mapping, you can retrieve superclass objects
with a single fetch, without performing joins. Adding a subclass or
modifying the superclass requires changes to just one table.

Disadvantages
Single table mapping can consume an inordinate amount of space since
every row includes columns for every one of the other entities’ attributes.
This may depend on how your database stores NULLs. Some databases
condense NULL values, thereby reducing the storage space needed, but
some databases maintain the length of the actual data type of the column
regardless of the value stored. Most databases also have limitations
on how many columns a table can have (typically this is around
250 columns), which can make it impossible to use single table
mapping for a deep class hierarchy that has lots of instance variables.
132

Modeling Inheritance
Also, if you have a lot of data, this approach can actually be less efficient
than horizontal mapping since with single table mapping you have to
search the entire table to find the rows needed to instantiate objects
of a particular type. (Horizontal mapping is only more efficient if your
application just fetches one type of leaf object at a time (instances of a
particular subclass).

Data Access Patterns for Inheritance
The following table summarizes how data is fetched in each of the
approaches.

In the table, “n” represents the number of entities involved in a deep
fetch. For example, when you perform a deep fetch against Person in
the Person, Customer, Employee class hierarchy, n equals 3.

Fetching and Inheritance
Once you’ve designed your class hierarchy and set up your EOModel to
support that class hierarchy, you can use this information to fetch objects
of the desired type. For example, you might want to just fetch Person
objects, not Customer or Employee objects—or you might want to fetch
all Person objects, including Customers and Employees.

You can control deep versus shallow fetches by using
EOFetchSpecification’s setIsDeep method (setIsDeep: in Objective-C).
This method specifies whether a fetch should include sub-entities of
the fetch specification’s entity. If this method is set to true (YES in
Objective-C), sub-entities are also fetched; if it’s set to false (NO),
they aren’t. EOFetchSpecifications are deep by default.

When multiple entities are mapped to a single database table, you must
set a qualifier on each entity to distinguish its rows from the rows of other
entities. You can either do this programmatically by using EOEntity

Fetches from Leaves Fetches from Root

Vertical Mapping 1 fetch using join n fetches using join

Horizontal Mapping 1 fetch n fetches

Single Table Mapping 1 fetch 1 fetch
133

Chapter 4 Advanced Enterprise Object Modeling
method setRestrictingQualifier (setRestrictingQualifier: in Objective-C),
or you can directly specify the qualifier in the EOModeler Advanced
Entity Inspector. A restricting qualifier maps an entity to a subset of rows
in a table. If you’re using single table inheritance mapping, you must use
a restricting qualifier that identifies objects of the desired type.

Delegation Hooks for Optimizing Inheritance
EOModelGroup includes delegate methods that you can use to exercise
more fine-grained control over inheritance. These include:

relationshipForRow
This method (entity:relationshipForRow:relationship: in Objective-C) is
invoked when relationships are instantiated for a newly fetched object.
The delegate can use the information in the row to determine which
entity the target enterprise object should be associated with, and replace
the relationship appropriately.

subEntityForEntity
This method (subEntityForEntity:primaryKey:isFinal: in Objective-C)
allows the delegate to fine-tune inheritance by indicating from which
sub-entity an object should be fetched based on its primary key. The
entity returned must be a sub-entity of the specified entity.

In Objective-C, if the delegate knows that the object should be fetched
from the returned entity and not one of its sub-entities, it should set the
isFinal argument (a pointer to a BOOL) to YES. (In Java, the object must
be fetched from the returned entity; it must be final.)

classForObjectWithGlobalID
This method (entity:classForObjectWithGlobalID: in Objective-C) is
also used to fine-tune inheritance. The delegate can use the specified
globalID to determine a subclass to be used in place of the one specified
in the entity argument.
134

Designing Database-Savvy Enterprise Objects
Java Limitation With Ambiguous
To-One Relationships
In both Java and Objective-C you can have to-many relationships to
instances of both leaf and non-leaf subclasses in your class hierarchy.
For example, the SoftballTeam entity can have a to-many relationship
to Person or just the Employee entity (as in a company only team).

Similarly, you can have to-one relationships to instances of leaf subclasses.
For example, the PurchaseOrder entity can have a to-one relationship
to the Customer entity.

However, in Java you can not have a to-one relationship to a non-leaf
entity, an ambiguous to-one relationship, unless you implement a
workaround. Ambiguous to-one relationships are not possible in Java
because of strong typing in the language. In Objective-C, the class of an
instance can be changed after it is instantiated (i.e., from the parent class
to the leaf class).

There are two workarounds for Java programmers. You can encode class
information in your primary and foreign keys, and implement
EOModelGroup’s delegate methods as described in “Delegation Hooks
for Optimizing Inheritance” on page 134. If you choose this option, then
consider using single table mapping since the table would already contain
class information.

The second workaround is to implement the ambiguous to-one
relationship as a to-many, similar to dealing with an optional to-one
relationship above. “Use a To-Many Relationship” on page 118

Designing Database-Savvy Enterprise Objects

The main function of a class object is to act as a factory for its instances,
so a class method is a natural place to implement custom instantiation.
When instances are initialized with data fetched from a database, why not
implement common database queries in the class object as creation
methods?
135

Chapter 4 Advanced Enterprise Object Modeling
For example, a video rental store application based on the sample Rentals
database might have a requirement to fetch all overdue rentals. To fulfill
this requirement, you could write a Rental class method such as the
following that fetches all its overdue instances:

In Java:

public static NSArray overdueRentalsWithEditingContext(
EOEditingContext ec)

{
NSGregorianDate today = new NSGregorianDate();
EOQualifier qualifer = new EOKeyValueQualifier(

"dueDate",
EOQualifier.QualifierOperatorLessThan,
today);

EOFetchSpecification fetchSpec = new
EOFetchSpecification(

@"Rental",
qualifer,
null);

return ec.objectsWithFetchSpecification(fetchSpec);
}

In Objective-C:

+ (NSArray *)
overdueRentalsWithEditingContext:

(EOEditingContext *)ec
{

NSCalendarDate *today = [NSCalendarDate calendarDate];
EOQualifier *qualifer =

[EOQualifier qualifierWithQualifierFormat:
@"dueDate < %@",
today];

EOFetchSpecification *fetchSpec =
[EOFetchSpecification

fetchSpecificationWithEntityName:@"Rental"
qualifier:qualifer sortOrderings:nil];

return [ec objectsWithFetchSpecification:fetchSpec];
}

136

Designing Database-Savvy Enterprise Objects
You would then invoke the method as follows:

In Java:

rentalArray =
Rental.overdueRentalsWithEditingContext(ec);

In Objective-C:

rentalArray = [Rental
overdueRentalsWithEditingContext:ec];

Note that overdueRentalsWithEditingContext takes an EOEditingContext
as an argument. This is because enterprise objects are fetched into
a particular EOEditingContext. An EOEditingContext establishes
a single, internally consistent “object view” of the database, and an
enterprise object in one editing context shouldn’t have references to
enterprise objects in another one. Consequently, methods that fetch
enterprise objects must fetch them using the correct EOEditingContext.

Because a class object is global, its static methods (class methods in
Objective-C) can be invoked from anywhere in an application. Thus,
a class method that returns enterprise objects fetched from the database
needs to receive the correct EOEditingContext as an argument.

Note: While the Rental class in this example closely resembles the
Rental class for the sample Rentals database, dueDate has been added
here to simplify the qualifier for fetching overdue rentals. The Rental
class for the sample Rentals database doesn’t have a dueDate attribute.
137

Part III

Application Design

Application ConfigurationsChapter 5

When you use WebObjects Builder or Interface Builder to create
the user interface of an Enterprise Objects Framework application,
you also set up a network of behind-the-scenes objects including
EODatabaseDataSources and EOEditingContexts. Some of these
objects don’t have representations in the builder applications, so
you might not know they’re there. Yet when you build and run your
application, they’re created automatically and they perform many
important functions.

You rarely need to intervene in the automatic creation of these
behind-the-scenes objects, but sometimes you need to interact with
them. Therefore, it’s important to know when they’re created and
ready to do work. The same is true in applications that don’t have
a graphical user interface.

The flexibility of Enterprise Objects Framework allows endless
configurations, but most are variations on a few basic arrangements.
This chapter explains how the plumbing for typical Enterprise Objects
Framework applications is established and how to implement
variations on the typical configurations. It’s organized into the
following major sections:

• “Graphical User Interface Applications” on page 143
• “Non-Graphical User Interface Applications” on page 153
• “Editing Context Configurations” on page 159
• “Object Store Coordinator Configurations” on page 165
• “Accessing Multiple Databases” on page 168

Graphical User Interface Applications

In a typical Enterprise Objects Framework application, a display group
binds data fetched from a database to elements of the application’s user
interface. As shown in Figure 31, a display group relies on a network of
objects to connect to a database and interact with it.
143

Chapter 5 Application Configurations
Figure 31. Typical Configuration of a Graphical User Interface Application

Relational
Database

EODatabaseDataSource

EOObjectStoreCoordinator

Display Group

EOEditingContext

EODatabaseChannelEODatabase EODatabaseContext

EOAdaptor EOAdaptorContext EOAdaptorChannel
144

Graphical User Interface Applications
The network of objects is created automatically. For example, all
the following procedures create a display group that is automatically
associated with an EODatabaseDataSource and its underpinnings:

• Running the EOF Wizard in Project Builder (to create an
Application Kit Framework application with a graphical
user interface).

• Dragging an entity from a model file into a nib file in
Interface Builder.

• Running the WebObjects Application Wizard in Project Builder
to create a Main component with database access.

• Dragging an entity from a model file into a component in
WebObjects Builder.

• Creating a “Direct-to-Web” application.

For more information on these classes and their roles in a database
application, see the chapter “Enterprise Objects Framework Viewed
Through Its Classes” on page 43 and the class specification for each in
the Enterprise Objects Framework Reference.

The following sections describe how the network of objects is created,
starting with a nib or component.

Loading a User Interface
When you drag an entity from a model file into Interface Builder or
WebObjects Builder, you create an entity display group—a display group
that’s connected to an EODatabaseDataSource. The builder application
automatically creates a display group, an EODatabaseDataSource, and an
EOEditingContext. These objects are archived in your nib file or
WebObjects component directory. At run-time, your application
unarchives these objects as their interface is loaded, as shown in Figure 32.
As part of unarchiving a nib file or component, many other objects are
brought into the network of behind-the-scenes objects.
145

Chapter 5 Application Configurations
Figure 32. Enterprise Objects Framework Objects in a Nib or Component

Relational
Database

EODatabaseDataSource

EOObjectStoreCoordinator

Display Group

EOEditingContext

EODatabaseChannelEODatabase EODatabaseContext

EOAdaptor EOAdaptorContext EOAdaptorChannel

The upper layers of the
object network are unarchived
from a nib file or component
directory along with the interface.
146

Graphical User Interface Applications
Unarchiving an Editing Context
During unarchiving, an EOEditingContext uses the EOEditingContext
class method defaultParentObjectStore to determine its parent object
store. Normally, it’s the EOObjectStoreCoordinator returned from the
EOObjectStoreCoordinator class method defaultCoordinator . If a
coordinator has not yet been created, it is created at this time.

Unarchiving a Database Data Source
Unarchiving an EODatabaseDataSource sets a more complex chain
of events into motion: an EODatabaseContext and a host of associated
objects are brought into the network of objects as follows:

1. The EODatabaseDataSource verifies that its underlying
EOObjectStoreCoordinator has an EOModelGroup that can
service its entity. If you haven’t assigned a model group to
the coordinator, then the coordinator uses the default model
group—the shared EOModelGroup instance returned by the
EOModelGroup class method defaultGroup .

The default model group is created the first time defaultGroup is
invoked. Subsequent invocations return the same shared instance.
It contains all the models for an application, as well as for any
frameworks the application references. In the majority of
applications, the default model group is sufficient. However,
if your particular application requires different model grouping
semantics, you can create your own EOModelGroup instance,
add the appropriate models, and assign it to your application’s
EOObjectStoreCoordinator using the EOModelGroup method
setModelGroup (or the EOObjectStoreCoordinator method
setModelGroup: in Objective-C).

2. After establishing that its entity can be serviced, the
EODatabaseDataSource connects to an EODatabaseContext
using the EODatabaseContext static method
registeredDatabaseContextForModel
(registeredDatabaseContextForModel:editingContext:
in Objective-C). This method checks to see if the application’s
EOObjectStoreCoordinator already has a database context that
the data source can use. If it does, it returns that database context.
147

Chapter 5 Application Configurations
Otherwise it instantiates a new database context, adds it to the
coordinator, and returns it.

When an EODatabaseDataSource connects to an
EODatabaseContext, the database context brings in additional
supporting objects. A database context can’t exist without
an EODatabase and an EOAdaptorContext. Similarly, an
EODatabase and an EOAdaptorContext can’t exist without
an EOAdaptor. Thus, as shown in Figure 33, connecting to a
database context also connects an EODatabase, an EOAdaptor,
and an EOAdaptorContext. Furthermore, if the adaptor bundle
associated with the EODatabaseDataSource’s model hasn’t yet
been loaded, it is loaded now.
148

Graphical User Interface Applications
Figure 33. Connecting an EODatabaseDataSource with an EODatabaseContext

Relational
Database

EODatabaseDataSource

EOObjectStoreCoordinator

Display Group

EOEditingContext

EODatabaseChannelEODatabase EODatabaseContext

EOAdaptor EOAdaptorContext EOAdaptorChannel

During the unarchiving, an
EODatabaseDataSource
connects to an
EODatabaseContext.
The EODatabaseContext
is preconnected to an
EODatabase and an
EOAdaptorContext which
are, in turn, preconnected
to an EOAdaptor.
149

Chapter 5 Application Configurations
Sharing Editing Contexts and Coordinators
For Application Kit applications, Interface Builder creates only one
EOEditingContext per nib. Therefore two entity display groups in
the same nib share the same editing context by default.

Similarly, all editing contexts in an application share the same
EOObjectStoreCoordinator by default.

If you want a different configuration, see the section “Editing Context
Configurations” on page 159. It describes how objects in different nibs
can share the same editing context and how to set up nested editing
context. The section “Object Store Coordinator Configurations” on
page 165 describes how you can set up multiple
EOObjectStoreCoordinators.

Figure 34. Display Groups in the Same Nib Share an Editing Context

EODatabaseDataSource

Display Group Display Group

EODatabaseDataSource

EOObjectStoreCoordinator

Nib
EOEditingContext
150

Graphical User Interface Applications
Figure 35. Display Groups in Different Nibs Have Separate Editing Contexts

Database Context Rendezvousing
To minimize the number of database connections an Enterprise Objects
Framework application uses, an EODatabaseDataSource may share an
existing EODatabaseContext with other data sources.

Using the EODatabaseContext static method
registeredDatabaseContextForModel
(registeredDatabaseContextForModel:editingContext: in Objective-C),
a database data source rendezvouses with compatible database contexts
whenever possible. A data source is compatible with a database context
when the data source’s model is compatible with the models in the
EOModelGroup of the database context’s EODatabase. Two models are
compatible when their connection dictionaries are equal as determined
by NSDictionary’s isEqualToDictionary method (isEqualToDictionary:
in Objective-C).

For example, in Figure 36, like-colored gray objects are associated with
compatible models—models that have the same connection dictionary.
The light gray data source is associated with the light gray database
context, and the dark gray data sources are associated with the dark gray
database context. The second dark gray data source to be unarchived
rendevouses with the first data source’s database context.

EODatabaseDataSource

Display Group Display Group

EODatabaseDataSource

EOObjectStoreCoordinator

EOEditingContext EOEditingContext

Nib 1 Nib 2
151

Chapter 5 Application Configurations
Figure 36. Data Sources Rendezvous With Compatible EODatabaseContexts

Note that two database data sources can be associated with different
models and still share database contexts. So long as the models are
compatible, they can be serviced by the same EODatabase and
EODatabaseContext.

If you want to prevent an EODatabaseDataSource from rendezvousing
on an existing EODatabaseContext, see “Object Store Coordinator
Configurations” on page 165.

Setting Up Channels
The remaining objects in the network—an EODatabaseChannel and
an EOAdaptorChannel—are created on demand when the application
initiates a database interaction. For more information, see the section
“Inside EODatabaseContext” on page 157.

EODatabaseDataSource

EODatabaseDataContext

EODatabaseDataSource EODatabaseDataSource

EODatabaseContext

DisplayGroup

EOEditingContext EOEditingContext

EOObjectStoreCoordinator

DisplayGroupDisplayGroup

EOEditingContext

Associated with
compatible models

Associated with
compatible models
152

Non-Graphical User Interface Applications
Non-Graphical User Interface Applications

Command line tools, background processes, and other non-graphical
user interface applications have a very similar configuration to that of
applications with an interface. However, they don’t use display groups,
and they typically don’t use EODatabaseDataSources either.

Figure 37. Typical Configuration of a Non-Graphical-User-Interface Application

In an application that doesn’t have a graphical user interface, your
code must initiate the creation of the network of the behind-the-scenes
objects. This creation process is typically begun when you allocate and
initialize an EOEditingContext.

Relational
Database

EOObjectStoreCoordinator

EOEditingContext

EODatabaseChannelEODatabase EODatabaseContext

EOAdaptorContextEOAdaptor EOAdaptorChannel
153

Chapter 5 Application Configurations
Creating an Editing Context
You create an EOEditingContext the same way you’d create any other
object:

In Java:

EOEditingContext editingContext = new EOEditingContext();

In Objective-C:

EOEditingContext *editingContext =
[[EOEditingContext alloc] init];

Both of the examples above create a new editing context and connect
it to an EOObjectStoreCoordinator. By default, the editing context
is connected to the default object store coordinator as determined
by EOObjectStoreCoordinator’s defaultCoordinator static method
(class method in Objective-C).
154

Non-Graphical User Interface Applications
Figure 38. Allocating and Initializing an EOEditingContext

The first time defaultCoordinator is invoked, it creates an
EOObjectStoreCoordinator. Subsequent invocations return the
same instance. Consequently, all the editing contexts in an application
are connected to EODatabaseContext objects through the same
EOObjectStoreCoordinator by default.

The remaining objects in the network are created on demand. When a
database operation is initiated with a message to an editing context, the
request is passed on to its object store coordinator. In the case of a nested
editing context configuration, the message is passed down the object
network until reaches the editing context’s root object store—usually
an EOObjectStoreCoordinator.

Relational
Database

EOObjectStoreCoordinator

EOEditingContext

EODatabaseChannelEODatabase EODatabaseContext

EOAdaptorContextEOAdaptor EOAdaptorChannel

The upper layer of the object
network is created when your
code allocates and initializes
an EOEditingContext.
155

Chapter 5 Application Configurations
For example, an objectsWithFetchSpecification message sent to an
EOEditingContext percolates through its parent object stores until
it reaches the coordinator as shown in Figure 39.

Figure 39. How Messages Percolate Down to an EOObjectStoreCoordinator

Inside EOObjectStoreCoordinator
When an EOObjectStoreCoordinator receives a message requiring
interaction with the database, it attempts to locate an
EOCooperatingObjectStore—usually an EODatabaseContext—that
can handle the request. The coordinator generally builds its list of
cooperating stores on demand as follows:

1. When a coordinator needs to forward a request to a database, it
checks to see if it has an cooperating stores in its list that can handle
the interaction. If it finds one, it uses it.

2. If the coordinator does not have a cooperating store to handle
the interaction (either because none of its cooperating stores can
handle this specific database request or because the coordinator
doesn’t have any cooperating stores), it posts a
CooperatingObjectStoreNeeded notification
(EOCooperatingObjectStoreNeeded in Objective-C)
so that another object can register a new cooperating store.

Child
EOEditingContext

objectsWithFetchSpecification

objectsWithFetchSpecification

Parent
EOEditingContext

In a nested EOEditingContext configuration
the child editing context relays an
objectsWithFetchSpecification message to
its parent object store, which relays the
message to its own parent object store, and so
on until the message reaches the root
object store (usually an EOObjectStoreCoordinator).

EOObjectStoreCoordinator
(Root Object Store)
156

Non-Graphical User Interface Applications
After posting the notification, the coordinator checks its list of
cooperating stores a second time. If it finds an available store
(because an object registered a new one in response to the
notification), it uses the newly registered store.

In a typical Enterprise Objects Framework application,
an EOObjectStoreCoordinator’s cooperating stores are
EODatabaseContexts. The EODatabaseContext class registers
for the CooperatingObjectStoreNeeded notification, and
provides the coordinator with a new database context that can
accommodate the request. Consequently, you don’t have to
provide cooperating stores to a coordinator yourself unless you’re
using a subclass of EOCooperatingObjectStore that isn’t an
EODatabaseContext.

3. Once the coordinator has a cooperating store to use, it forwards
the request to the store.

Note: In the case of an application with a graphical user interface,
an EODatabaseDataSource generally forces a connection to an
EOCooperatingObjectStore when it’s unarchived from a nib or
component. Thus, the EOObjectStoreCoordinator may never post
a CooperatingObjectStoreNeeded notification.

Inside EODatabaseContext
An EODatabaseContext performs a database operation using an
EODatabaseChannel. When a database context receives a message that
requires database interaction (such as objectsWithFetchSpecification),
it attempts to obtain a channel to perform the corresponding database
operation as follows:

1. If the database context has a registered channel that isn’t busy
(that is, a channel that doesn’t have a fetch in progress), it uses
the available channel.

2. If the EODatabaseContext doesn’t have an available
channel (either because all the channels are busy or
because the context doesn’t have any channels),
it posts a DatabaseChannelNeededNotification
(EODatabaseChannelNeededNotification in Objective-C)
157

Chapter 5 Application Configurations
so that another object can register a new channel. After posting the
notification, the context checks its list of registered channels a
second time. If it finds an available channel (because an object
registered a new channel), it uses the newly registered channel.

3. If the database context doesn’t have any registered channels after
posting a DatabaseChannelNeededNotification, it creates one,
puts it in its list of registered channels, and uses the new channel
to perform the database operation.

Note: By default, an EODatabaseContext has one
EODatabaseChannel, but you can register additional channels
programmatically. For more information, see the chapter “Connecting
to a Database” on page 173.

Substituting a Custom EOCooperatingObjectStore
There are two approaches to providing a custom
EOCooperatingObjectStore to an EOObjectStoreCoordinator:

• Tell EODatabaseContext what class to register.

If the EOCooperatingObjectStore is a subclass of
EODatabaseContext, you can simply tell EODatabaseContext to
register instances of the subclass instead of EODatabaseContext
instances. Use the EODatabaseContext static method
setContextClassToRegister (setContextClassToRegister:
class method in Objective-C) to specify your subclass.

• Register the custom EOCooperatingObjectStore yourself.

To register your own cooperating store, add yourself as an observer
of CooperatingObjectStoreNeeded notifications. When you
receive a notification, create an instance of your custom
store and use the EOObjectStoreCoordinator method
addCooperatingObjectStore (addCooperatingObjectStore:
in Objective-C) to register your cooperating store with the
coordinator. To prevent EODatabaseContext from registering
competing object stores, invoke the EODatabaseContext static
method setContextClassToRegister with null (nil in Objective-C)
as the argument.
158

Editing Context Configurations
For more information, see the EODatabaseContext class specification in
the Enterprise Objects Framework Reference.

Editing Context Configurations

Recall that by default, each nib has its own EOEditingContext and that
nibs share an EOObjectStoreCoordinator (see “Sharing Editing Contexts
and Coordinators” on page 150). In this default configuration, each peer
editing context has its own object graph. So for example, a single database
row can be represented by separate enterprise object instances in
different editing contexts. Changes to an object in one editing context
don’t affect the corresponding object in another editing context until all
changes are successfully saved through their shared
EOObjectStoreCoordinator. At that time the objects in all editing
contexts are synchronized with the committed changes.

This arrangement is useful when an application allows the user to edit
multiple independent documents. For example, imagine an Application
Kit application that creates and modifies video rental records. Each rental
is represented by a window that is loaded from the same nib.

You can implement variations on the default configuration to:

• Use one EOEditingContext for multiple nibs.

In this scenario, multiple nibs have the same object graph and
therefore see each other’s changes to objects immediately.

• Use nested EOEditingContexts.

This configuration is useful in a “drill down” user interface where,
for example, changes in a nested dialog box can be okayed or
canceled.
159

Chapter 5 Application Configurations
Using One Editing Context for Multiple Nibs
Ordinarily, changes to objects in one EOEditingContext aren’t
immediately reflected in the objects of another editing context. Figure 40
shows how this plays out in an application.

Figure 40. Different Nibs Use Different EOEditingContexts

In an application where changes in Window 1 should be immediately
reflected in Window 2, both nibs should use the same editing context.

To use one editing context for multiple nibs, use the
EOEditingContext static method setSubstitutionEditingContext
(the setSubstitutionEditingContext: class method in Objective-C). You
use this method to substitute the specified editing context for the one
associated with a nib file you’re about to load. This method causes all of
the connections in your nib file to be redirected to the specified editing
context.

For example, if Nib 1 in the figure above is loaded before Nib 2,
you could invoke the following code before loading Nib 2 to set its
EOEditingContext to the same one in Nib 1.

Display
Group

EODatabase
DataSource

EOEditing
Context

Display
Group

EODatabase
DataSource

EOEditing
Context

Nib 1 Nib 2
160

Editing Context Configurations
In Java:

EODisplayGroup displayGroup;
// Assume that displayGroup is the display group
// from Nib 1 and that Nib 1 has already been loaded.

EOEditingContext editingContext;

editingContext =
displayGroup.dataSource().editingContext();
EOEditingContext.setSubstitutionEditingContext(editingCo
ntext);
NSApplication.loadNibNamed("Nib2", this);

// Restore the default behavior
EOEditingContext.setSubstitutionEditingContext(null);

In Objective-C:

EODisplayGroup *displayGroup;
// Assume that displayGroup is the display group
// from Nib 1 and that Nib 1 has already been loaded.

EOEditingContext *editingContext;

editingContext = [[displayGroup dataSource]
editingContext];
[EOEditingContext
setSubstitutionEditingContext:editingContext];
[NSApplication loadNibNamed:@"Nib2" owner:self];

// Restore the default behavior
[EOEditingContext setSubstitutionEditingContext:nil];

After loading a nib with a substitution editing context, you should restore
the default behavior by setting the substitution editing context to null (nil
in Objective-C). Then when nibs are loaded in the future, their editing
contexts are simply unarchived and aren’t replaced.

Using Nested Editing Contexts
EOEditingContexts can be nested, allowing a user to make edits to
an object graph in one editing context and then discard or commit those
changes to another object graph (which, in turn, may commit them to an
external store). For example, Figure 41 shows a drill-down user interface
that can be implemented with nested editing contexts. Before users save
rental information, they can supply optional comments about the rental.
Canceling the Comments panel reverts the rental to its pre-comments
state. Okaying the Comments panel incorporates the comments into
the rental.
161

Chapter 5 Application Configurations
Figure 41. A Drill-Down User Interface

To implement the drill-down behavior of this interface, the editing
context for the Comments window sits on top of the Rental window’s
editing context as shown in Figure 42. In this configuration, the Rental
window’s editing context is the parent object store of the Comment’s
editing context.
162

Editing Context Configurations
Figure 42. Nested Editing Context Configuration

To set up a nested editing context configuration, use the
EOEditingContext static method setDefaultParentObjectStore
(setDefaultParentObjectStore: in Objective-C). For example,
Figure 43 shows the nibs for the Rental and Comments windows.

Figure 43. Nibs for the Rental and Comments Windows

EODisplayGroup

EODisplayGroup

EOEditing
Context

EODatabase
DataSource

EOEditing
Context

EOObjectStore
Coordinator

Rental

Comments

EODatabase
DataSource

Nib 1 Nib 2

EODisplayGroup

EOEditingContext

EOObjectStore
Coordinator

EOObjectStore
Coordinator

Rental Comments

EODisplayGroup

EOEditingContext
163

Chapter 5 Application Configurations
Before loading Nib 2, the Rental application should invoke the following
code to assign the Rental editing context as the parent object store of the
Comments editing context.

In Java:

EODisplayGroup rentalsDisplayGroup;
// Assume that rentalsDisplayGroup is the display group
// from Nib 1 and that Nib 1 has already been loaded.

EOEditingContext editingContext;

editingContext =
displayGroup.dataSource().editingContext();
EOEditingContext.setDefaultParentObjectStore(editingCont
ext);
NSApplication.loadNibNamed("Nib2", this);

// Restore the default behavior
EOEditingContext.setDefaultParentObjectStore(null);

In Objective-C:

EODisplayGroup *rentalsDisplayGroup;
// Assume that rentalsDisplayGroup is the display group
// from Nib 1 and that Nib 1 has already been loaded.

EOEditingContext *editingContext;

editingContext = [[displayGroup dataSource]
editingContext];
[EOEditingContext
setDefaultParentObjectStore:editingContext];
[NSApplication loadNibNamed:@"Nib2" owner:self];

// Restore the default behavior
[EOEditingContext setDefaultParentObjectStore:nil];

After loading a nib with an editing context substituted as the default
parent object store, you should restore the default behavior by setting the
default parent EOObjectStore to null (nil in Objective-C). Then when
nibs are loaded in the future, their editing contexts are simply connected
to the default EOObjectStoreCoordinator.
164

Object Store Coordinator Configurations
Object Store Coordinator Configurations

Recall that by default, all the EOEditingContexts in an application share
the same EOObjectStoreCoordinator (see “Sharing Editing Contexts
and Coordinators” on page 150). In this default configuration, all of a
coordinator’s editing contexts are synchronized with one another after any
of the editing contexts save changes. Also, the editing contexts share
underlying database connections wherever possible. This default
behavior is typically what you want, but there are a some rare situations
in which you might need more than one EOObjectStoreCoordinator.

All entity names must be unique within the scope of an
EOObjectStoreCoordinator, so you need multiple coordinators when
your application uses more than one connection to a database and each
connection uses entities with the same name. For example, the following
scenarios require multiple coordinators:

• An application that performs two types of tasks—regular user tasks
and administrative tasks

The different types of tasks require different connections to the
database. Regular user tasks go through a database connection that
uses a regular user login while administrative tasks go through a
database connection that uses a special administrative login.
The two connections use different connection dictionaries,
but otherwise use the same models. Consequently, the each
connection uses the same entities.

• A WebObjects application that requires users to log in with their
own login information

In this scenario, you’d set up a database connection for each user
session. Here, too, the database connections use different
connection dictionaries, but otherwise use the same models.

• An application that requires multiple, simultaneous transactions
open on the same database

Because the transactions use the same model (and potentially the
same connection information), they require their own connections
to the database.
165

Chapter 5 Application Configurations
As shown in Figure 44, using an additional coordinator influences the
number of database connections your application maintains.

Figure 44. Multiple EOObjectStoreCoordinators

The following sections describe how to create multiple coordinators.
After you create an EOObjectStoreCoordinator, it takes care of
setting up its underlying network of objects as described in the
sections “Inside EOObjectStoreCoordinator” on page 156
and “Inside EODatabaseContext” on page 157.

SybaseOracle

EOAdaptor

EOObjectStore
Coordinator

EODatabase
Context

EOAdaptor
Context

EOAdaptor
Channel

EOEditing
Context

EODatabase EODatabase
Channel

EOAdaptor

EOObjectStore
Coordinator

EODatabase
Context

EOAdaptor
Context

EOAdaptor
Channel

EOEditing
Context

EODatabase EODatabase
Channel

Database session

EOEditing Contexts that have different EOObjectStoreCoordinators
aren't peers. They don't share underlying database connections

and they aren't kept in sync with one another.

The database connections for different EOObjectStoreCoordinators
can be the same or different databases.

Database session
166

Object Store Coordinator Configurations
Setting Up Multiple Coordinators Programmatically
If you are creating your EOEditingContexts programmatically, assigning
unique EOObjectStoreCoordinators wherever necessary is
straightforward. You simply:

In Java:

EOObjectStoreCoordinator coordinator =
new EOObjectStoreCoordinator();

EOEditingContext ec = new EOEditingContext(coordinator);

In Objective-C:

EOObjectStoreCoordinator *coordinator =
[[[EOObjectStoreCoordinator alloc] init] autorelease];

EOEditingContext *ec = [[EOEditingContext alloc]
initWithParentObjectStore:coordinator];

Setting Up Multiple Coordinators Using Nibs
If you are unarchiving your EOEditingContexts from nib files,
you can specify a unique EOObjectStoreCoordinator using the
EOEditingContext method setDefaultParentObjectStore
(setDefaultParentObjectStore: in Objective-C) as follows:

In Java:

EOObjectStoreCoordinator coordinator =
new EOObjectStoreCoordinator();

EOEditingContext.setDefaultParentObjectStore(
coordinator);

NSApplication.loadNibNamed("MyNib", this);
EOEditingContext.setDefaultParentObjectStore(null);

In Objective-C:

EOObjectStoreCoordinator *coordinator =
[[[EOObjectStoreCoordinator alloc] init] autorelease];

[EOEditingContext
setDefaultParentObjectStore:coordinator];

[NSApplication loadNibNamed:@"MyNib" owner:self];
[EOEditingContext setDefaultParentObjectStore:nil];

After setting the default object store coordinator, new editing
contexts (such as the one being unarchived from the nib) use the new
EOObjectStoreCoordinator. After loading the nib, set the default parent
object store back to the default EOObjectStoreCoordinator by sending a
setDefaultParentObjectsStore message with null (nil) as the argument.
167

Chapter 5 Application Configurations
Accessing Multiple Databases

Enterprise Objects Framework applications access multiple databases
almost transparently. Simply make different models for each database,
and then you can create relationships from an entity in one database to an
entity in another. In your application, you can fetch enterprise objects
from different databases into the same object graph without any extra
work. See the chapter “Using EOModeler” for more information.

However, there are a couple of pitfalls that can occur when you’re
working with more than one database:

• Enterprise Objects Framework doesn’t implement a two-phase
commit.

• EODatabaseDataSources with models for different databases can
erroneously rendezvous on the same EODatabaseContext.

The following sections describe these problems and what you can do
about them.
168

Accessing Multiple Databases
Getting By Without Two-Phase Commit
When an EOEditingContext has changes that need to be
saved in multiple databases, the editing context’s underlying
EOObjectStoreCoordinator guides its EOCooperatingObjectStores
(usually EODatabaseContexts) through a multi-pass save protocol
in which each cooperating store saves its own changes and forwards
remaining changes to other cooperating stores.

Although a coordinator manages objects from multiple repositories,
it doesn’t guarantee consistent updates when saving changes across
object stores. If your application requires guaranteed distributed
transactions, you can either provide your own solution by creating a
subclass of EOObjectStoreCoordinator that integrates with a TP monitor,
use a database server with built-in distributed transaction support, or
design your application to write to only one object store per save
operation (though it may read from multiple object stores). For more
discussion of this subject, see the EOObjectStoreCoordinator class
specification in the Enterprise Objects Framework Reference.

Preventing Database Context Rendezvousing
As described in “Database Context Rendezvousing” on page 151,
EODatabaseDataSources automatically rendezvous on the same
EODatabaseContexts to minimize the number of database connections
an application creates. For example, in an application that accesses only
one database, all the database data sources share the same database
context by default. In an application that accesses two databases, there
are two database contexts by default (one for each database); and as
shown in Figure 45, a database data source uses one or the other of the
database contexts depending on the database with which its entity is
associated.
169

Chapter 5 Application Configurations
Figure 45. Sharing EODatabaseContexts

Enterprise Objects Framework determines whether or not an database
data source should rendezvous with an existing database context based
on the data source’s model. If the data source’s model is compatible with
an database context’s model, then the database data source can use the
database context.

SybaseOracle

EOAdaptor
Context

EOAdaptor
Context

EODatabase
Context

EODatabase
Context

EOEditing
Context

EOEditing
Context

EOObjectStore
Coordinator

EODatabase
DataSource

EODatabase
DataSource

EODatabase
DataSource

Display
Group

Display
Group

Display
Group
170

Accessing Multiple Databases
Two models are compatible when their connection dictionaries are equal.
Thus, if you don’t assign connection information to your models, database
data sources can erroneously rendezvous with the same database context.
For example, suppose an application uses two databases. The application
contains two EODisplayGroups, each representing an entity from a
different database. Further suppose that the models for the databases
don’t contain any connection information because the application
requires the user to supply valid login information. In this scenario,
the database data sources for each display group rendezvous on the
same database context, which causes an error. Here’s how it happens:

1. The first database data source is unarchived. During unarchiving,
it connects a database context using the method
registeredDatabaseContextForModel
(registeredDatabaseContextForModel:editingContext:
in Objective-C). This EODatabaseContext static method
(class method in Objective-C) checks to see if a database context
that can service the data source’s model already exists. Since this
is the first database data source to be unarchived, there isn’t an
database context available at all, so one is created.

2. In the process of creating the database context, the adaptor
specified in the model is loaded. An EOAdaptor is instantiated,
and the new database context is associated with this adaptor.

3. The second database data source is unarchived. When
registeredDatabaseContextForModel is invoked this time, it
returns the existing database context because the models for
the two data sources are considered compatible.

At this point, two database data sources share a database context that
represents a single database session; but two database contexts are
actually needed. When the second data source attempts to interact with
its database, it fails because it’s using a connection to the wrong database.

The simplest way to prevent rendezvousing is to assign distinct
connection dictionaries to your model files. You don’t have to assign
complete connection dictionaries. The dictionaries associated with
different databases simply must differ in one or more entries.
171

Chapter 5 Application Configurations
Alternatively, you can programmatically assign complete connection
dictionaries to your models before any EODatabaseDataSource objects
are created—at application initialization time, for example. The best way
to access your models is through the default EOModelGroup. The
models method returns an array of all the EOModels used by the
application.
172

Connecting to a DatabaseChapter 6

Normally, you don’t have to worry about making connections to the
database, because Enterprise Objects Framework connects to the
database automatically for you. However, there are times when you
may need to intervene. This chapter describes how Enterprise Objects
Framework manages database connections and how you can customize
the process. It’s organized into the following sections:

• “When Database Connections Are Opened and Closed”
(page 175) describes when applications open and close
database connections.

• “Logging into a Database” (page 176) describes the process
of getting and validating database connection information.
It answers the questions “How do I set connection information
that’s not in a model?” and “How can I suppress an adaptor’s
login panel in an OpenStep application?”

• “Limiting the Number of Database Connections” (page 180)
describes how to close database connections that aren’t in use.

• “Using Multiple EODatabaseChannels” (page 184) describes
how to avoid “busy channel” fetching conflicts.

• “Character Encodings” (page 185) describes how to tell both the
database and the adaptor what encoding to use.

When Database Connections Are Opened and Closed

If you’re using an EOEditingContext in your application, Enterprise
Objects Framework connects to the database automatically. It makes
a connection the first time a database operation is initiated, and reuses
that same connection for subsequent database operations.

Enterprise Objects Framework doesn’t close its connections to
the database. It leaves the connections open until the application
terminates. If you need to close database connections that aren’t in use,
see the section “Limiting the Number of Database Connections” on
page 180.
175

Chapter 6 Connecting to a Database
Logging into a Database

An EOAdaptor defines how an application logs into a database through a
dictionary of connection information. The keys of this dictionary identify
the login information the server expects; the values associated with those
keys are the values that the adaptor tries when logging in. The number of
connection dictionary keys and the keys themselves vary from adaptor to
adaptor. For example, the dictionary keys required by the Sybase adaptor
are databaseName , userName , password , and hostName . For more
information on connection dictionary keys, see the class specification
for the adaptor you’re using.

An EOAdaptor object must have a valid connection dictionary before its
application can connect to a database. There are three ways you can
provide one:

• Store the connection information in a model file.

• Run the adaptor’s login panel so that the user can enter login
information.

• Set the connection dictionary programmatically.

The approach you choose to provide connection information hinges on
the following questions:

• Do all users log in with the same connection information?

• Is any connection information sensitive?

• Does the application have an NSApplication object?

• Are users database savvy?

• Do I have time to write a custom login mechanism?

The following sections describe how to choose between and implement
each of these approaches.
176

Logging into a Database
Storing the Connection Information in a Model File
This approach is useful when all users log in with the same connection
information. It doesn’t require any code, and users aren’t exposed to
the login process. However, you shouldn’t use this approach to store
connection information that is sensitive. Models are stored in an ASCII
file format, and connection information is stored unencrypted. However,
you can store some connection information in a model file, and use
another approach to get the rest (such as requiring the user to enter
a database password.)

To implement this approach just use EOModeler to add connection
information to a model (see the book Enterprise Objects Framework Tools
and Techniques).

All EOAdaptor objects that are created behind the scenes (that is, all
adaptors that Enterprise Objects Framework creates automatically) are
created with adaptorWithModel (adaptorWithModel: in Objective-C).
This method initializes a new adaptor’s connection dictionary with the
connection information in the specified model. If the model’s connection
information is valid, no further action is required. Only adaptors that you
create programmatically with adaptorWithName (adaptorWithName: in
Objective-C) don’t take advantage of a model’s connection information.

Storing Partial Information in a Model File
When you store connection information in a model file, you don’t have
to store a complete connection dictionary. For example, you could store
everything but the user name and password. An EOAdaptor is still
initialized with the model’s connection information. You can supply the
missing information at run-time, either programmatically or by running
the adaptor’s login panel.

Running the Adaptor’s Login Panel
Adaptors provide login panels for use by Enterprise Objects Framework
applications. Running the login panel is a simple, no-code approach that
you can use in Application Kit applications. It’s useful when users have
different connection information—different user names and passwords,
for example. It can’t, however, be used in applications that don’t use the
Application Kit—in other words, not in command-line or web
applications.
177

Chapter 6 Connecting to a Database
One disadvantage of the adaptors’ login panels is that they aren’t
configurable. Each adaptor exposes specific connection keys in the login
panel. For example, the Oracle login panel has fields for server ID,
user name, and password. If the panel contains fields (such as server ID)
that you don’t want users to see, you should use another approach.
Similarly, a login panel may not provide an interface for all of an adaptor’s
connection keys. For example, the Oracle adaptor defines keys for
language and database encoding that don’t exist in the Oracle login panel.

Enterprise Objects Framework automatically runs the login panel when
an EOAdaptor object doesn’t have a valid connection dictionary. For
example, suppose you have an EODisplayGroup that’s configured to fetch
on load. Before a user performs a single action, the application:

• Creates a network of objects under the display group
• Connects to the database
• Performs a database operation to retrieve enterprise objects

If your model doesn’t have valid connection information, the application
runs a login panel until the user enters valid connection information or
cancels the panel. Specifically, when an EODatabaseContext is about
to use an EODatabaseChannel to interact with a database:

1. The EODatabaseContext checks to see if the
EODatabaseChannel’s underlying EOAdaptorChannel is open.

2. If the EOAdaptorChannel isn’t open, the EODatabaseContext
attempts to open the adaptor channel by sending it an openChannel
message.

3. If openChannel fails, the EODatabaseContext runs the adaptor’s
login panel by sending the EOAdaptorChannel’s adaptor a
runLoginPanelAndValidateConnectionDictionary message.

Canceling the panel has the effect of canceling whatever operation is
in progress. In the example above, canceling the panel cancels the fetch,
and the user interface opens without any data to display.

Suppressing the Login Panel
You can suppress the database adaptor’s login panel by
implementing the EODatabaseContext delegate method
178

Logging into a Database
databaseContextWillRunLoginPanelToOpenDatabaseChannel
(databaseContext:willRunLoginPanelToOpenDatabaseChannel:
in Objective-C). For more information, see the EODatabaseContext
class specification in the Enterprise Objects Framework Reference.

Alternatively, you can prevent an application from even attempting
to run a login panel by ensuring that its EOAdaptor objects have valid
connection dictionaries. Before an application’s first attempt to connect
to a database, send an assertConnectionDictionaryIsValid message to an
EOAdaptor. If the adaptor doesn’t have sufficient information to log
in (for example, it’s common to leave the user name and password
unspecified in the model file), assertConnectionDictionaryIsValid throws
an exception. In your exception handler, set the adaptor’s connection
dictionary programmatically.

Setting the Connection Dictionary Programmatically
If you don’t store connection information in your model and your
application doesn’t have an Application Kit user interface, you have to set
an adaptor’s connection dictionary programmatically. It requires code, but
this approach is also useful if you want to implement a login panel that’s
tailored to your application. For example, you can implement a login
component for a WebObjects application, a custom login panel for an
Application Kit Framework application, or a mechanism for tools and
background processes that gets connection information from command
line arguments.

How you get the connection information is up to you. Once you get it,
setting the connection dictionary is simple:

1. Insert the connection information into an NSDictionary object
using adaptor-defined keys.

2. Assign the dictionary to the adaptor using the EOAdaptor method
setConnectionDictionary (setConnectionDictionary:
in Objective-C).

3. Verify that the connection dictionary is valid using the EOAdaptor
method assertConnectionDictionaryIsValid .

For more information, see the EOAdaptor class specification in the
Enterprise Objects Framework Reference.
179

Chapter 6 Connecting to a Database
Getting Partial Information from a Model File
If you store some connection information in a model file, an EOAdaptor
is object is initialized with an incomplete connection dictionary.

To supply the missing information:

1. Get the adaptor’s incomplete connection dictionary using the
EOAdaptor method connectionDictionary .

2. Create a mutable copy.

3. Insert the missing key-value entries.

4. Assign the new, complete connection dictionary to the EOAdaptor
with setConnectionDictionary (setConnectionDictionary: in
Objective-C).

Limiting the Number of Database Connections

By default, an Enterprise Objects Framework application uses one
connection to the database—that is, all of an application’s display groups,
EODatabaseDataSources, EOEditingContexts, and
EODatabaseDataSources share the same database connections.
However, if an application accesses multiple databases (an Oracle
database and a Sybase database, for example), Enterprise Objects
Framework establishes one database connection for each database,
and these connections are shared as shown in Figure 46.
180

Limiting the Number of Database Connections
Figure 46. Sharing Database Connections

Because Enterprise Objects Framework uses the minimum number
of connections by default, you don’t need to do anything to limit the
number of connections an application uses. However, you can close
connections when they aren’t in use.

SybaseOracle

EOAdaptor
Context

EOAdaptor
Context

EODatabase
Context

EODatabase
Context

EOEditing
Context

EOEditing
Context

EOObjectStore
Coordinator

EODatabase
DataSource

EODatabase
DataSource

EODatabase
DataSource

Display
Group

Display
Group

Display
Group
181

Chapter 6 Connecting to a Database
Closing Database Connections
Enterprise Objects Framework doesn’t close database connections.
If many copies of an application are likely to be running at the same time,
you may run out of database connections. You can reduce the likelihood
of running out if you close connections when they aren’t in use. A good
time to close an EODatabaseChannel is after a specified period of
inactivity. The following method demonstrates the process:

In Java:

public void closeChannels() {
int i, contextCount, j, channelCount;
NSArray contexts;
EOObjectStoreCoordinator coordinator;

coordinator =
(EOObjectStoreCoordinator)EOObjectStoreCoordinator.

defaultCoordinator();

contexts = coordinator.cooperatingObjectStores();
contextCount = contexts.count();
for (i = 0; i < contextCount; i++) {

NSArray channels =
((EODatabaseContext)contexts.objectAtIndex(i)).

registeredChannels();
channelCount = channels.count();
for (j = 0; j < channelCount; j++) {

((EODatabaseChannel)channels.objectAtIndex(j)).
adaptorChannel().closeChannel();

}
}

}

182

Limiting the Number of Database Connections
In Objective-C:

- (void)closeChannels
{

int i, contextCount, j, channelCount;
NSArray *contexts;
EOObjectStoreCoordinator *coordinator;

coordinator = [EOObjectStoreCoordinator
defaultCoordinator];

contexts = [coordinator cooperatingObjectStores];
contextCount = [contexts count];
for (i = 0; i < contextCount; i++) {

NSArray *channels = [(EODatabaseContext *)
[contexts objectAtIndex:i] registeredChannels];
channelCount = [channels count];

for (j = 0; j < channelCount; j++) {
[[(EODatabaseChannel *)

[channels objectAtIndex:j] adaptorChannel]
closeChannel];

}
}

}

The closeChannels method gets the EODatabaseContexts from
the default EOObjectStoreCoordinator. Then it gets the
EODatabaseChannels registered with each EODatabaseContext.
To close the database connection managed by an EODatabaseChannel,
closeChannels sends the channel’s EOAdaptorChannel a closeChannel
message.

The next time a channel is needed, its EODatabaseContext reopens
it automatically.

The closeChannels method above assumes that the application only
has one EOObjectStoreCoordinator. If your application has multiple
coordinators, you would repeat the process for each coordinator. It also
assumes that all of the EOCooperatingObjectStores managed by the
coordinator are EODatabaseContexts, which is nearly always the case.
An EOObjectStoreCoordinator uses only EODatabaseContexts unless
you substitute your own EOCooperatingObjectStore subclass.
(For more information about EOCooperatingObjectStores,
see the chapter “Application Configurations” on page 141.)
183

Chapter 6 Connecting to a Database
Using Multiple EODatabaseChannels

By default, an EODatabaseContext uses one EODatabaseChannel.
However, occasionally your application needs more channels. Conflicts
due to “busy channels” can occur when an EODatabaseContext needs
to perform a database operation and its EODatabaseChannel is already
fetching. Most such conflicts are manifestations of inefficient database
access and can be avoided. For more information, see the section
“Cautions in Implementing Accessor Methods” on page 102 in the
chapter “Designing Enterprise Objects.” However, if you can’t eliminate
fetching conflicts, using additional EODatabaseChannels is an option.

When an EODatabaseContext needs a new channel because all its
current channels are busy, it posts an
EODatabaseChannelNeededNotification. If you add yourself as an
observer of this notification, you can create new EODatabaseChannels
on demand. (For more information on registering for notifications, see
the NSNotification and NSNotificationCenter class specifications in the
Foundation Reference.)

Note: You should set an upper limit on the number of
EODatabaseChannels your application registers with an
EODatabaseContext. It’s very unusual for an EODatabaseContext
to require more than two or three EODatabaseChannels.

The following code examples demonstrate creating a new
EODatabaseChannel and registering it with an EODatabaseContext:

In Java:

EODatabaseContext context; // Assume this exists
EODatabaseChannel channel = new
EODatabaseChannel(context);
if (channel) context.registerChannel(channel);

In Objective-C:

EODatabaseContext *context; // Assume this exists
EODatabaseChannel *channel = [[EODatabaseChannel alloc]

initWithDatabaseContext:context];
if (channel) [context registerChannel:channel];
184

Character Encodings
The EODatabaseChannel constructor can return null if no more
channels can be associated with the EODatabaseContext. Similarly, in
Objective-C, the EODatabaseChannel method initWithDatabaseContext:
can return nil if no more channels can be associated with the
EODatabaseContext. Some database servers and their corresponding
adaptors don’t support multiple channels per context. For example,
the Sybase adaptor only supports one EODatabaseChannel per
EODatabaseContext.

Character Encodings

An Enterprise Objects Framework adaptor and a database must
communicate with one another using the same character encoding.
For example, if the database sends data to your application using the
EUC (Japanese) encoding, your application must interpret the data as
EUC-encoded. Consequently, you have to tell both the database and
the database adaptor what encoding to use.

Choosing an Encoding
In choosing the encoding to use, you should attempt to minimize the
amount of data conversion the database has to perform. For example,
if the database stores EUC-encoded data, you should configure the
database and adaptor to communicate with one another using the
EUC encoding so the database doesn’t have to perform a conversion.
On the other hand, if your database stores data in an encoding that
Enterprise Objects Framework doesn’t support (such as EBCDIC),
the database must convert its data to a supported encoding before
sending it to your application. Similarly, it must convert data that it
receives from your application into the encoding it uses for data storage.
See the “Types and Constants” section of the Foundation Reference for a
complete list of supported encodings.

You should also attempt to minimize information loss by choosing an
encoding that is as rich as the encoding the database uses for data storage.
For example, if you choose a 7 bit ASCII encoding for communication
when the database stores data in Unicode, the Unicode-encoded
character ‘Á’ loses its accent during conversion.
185

Chapter 6 Connecting to a Database
Setting an Adaptor’s Character Encoding
By default, Enterprise Objects Framework adaptors send and expect to
receive data that is encoded with the default C string encoding. Since this
encoding is unlikely to match the encoding the database uses for storage,
you usually have to set it to a different encoding.

To change an adaptor’s character encoding from the default, add a
databaseEncoding entry to the adaptor’s connection dictionary specifying
the encoding. The adaptors expect the databaseEncoding entry to
contain the localized name of an encoding. To get the localized
name of an encoding, use the NSStringReference static method
localizedNameOfStringEncoding (in Objective-C, NSString’s class
method localizedNameOfStringEncoding:).

Setting the Database Character Encoding
The default encoding a database uses for communicating with
applications is database-dependent. Check your database server’s
documentation for more information.

If you need to use an encoding other than the default, Enterprise Objects
Framework adaptors define adaptor-specific connection keys for setting
the encoding. For example, the Sybase adaptor has the key LC_ALL and
the Oracle adaptor has the key NLS_LANG . To set the encoding the
database should use to send data to and receive data from your
application, add an entry to the adaptor’s connection dictionary for the
adaptor-specific key. Check your database server’s documentation for the
available character encodings.

Note: The databaseEncoding and the adaptor-specific encoding entries
in a connection dictionary must specify the same encoding. However,
the string that identifies the encoding may differ. For example, to tell a
Sybase database to use the ISO Latin 1 encoding, you set the LC_ALL
connection key to “iso-1” and the databaseEncoding connection key to
“ISO Latin-1”.
186

Behind the ScenesChapter 7

Using Application Kit applications as examples, this chapter answers
the following questions about what Enterprise Objects Framework
does behind the scenes:

• What is the sequence of events when objects are fetched from
the database?

• How does an EOEditingContext manage changes to its objects?

• What happens when changes to objects are saved to the
database?

• How does Enterprise Objects Framework manage transactions?

Enterprise Objects Framework provides hooks so that your code can
intervene in each of these scenarios. In addition to describing what
happens behind the scenes in an Enterprise Objects Framework
application, this chapter lists the delegate methods and notifications
your code can use at every stage of an application to do custom
processing.

Most of the information in this chapter can also be applied to other
types of applications (command-line and web applications), but some
of the details vary from what’s illustrated here with Application Kit
applications.

Fetching Objects

This section describes the sequence of events that occurs when objects
are fetched from the database. It’s broken down into the following
major sections:

• “EODisplayGroup Receives a fetch Message” (page 191)
• “Inside EODatabaseContext” (page 192)
• “Inside EODatabaseChannel” (page 195)

Figure 47 provides a high-level view of what happens in Enterprise
Objects Framework when you fetch an object.
189

Chapter 7 Behind the Scenes
Figure 47. What Happens During a Fetch

Relational
Database

Fetch Request Object
Displayed

EODatabaseChannel

EODisplayGroup

EODatabaseContext

EOObjectStoreCoordinator

EOEditingContext

EODatabaseDataSource

EOAdaptorChannel
190

Fetching Objects
Note: Figure 47 is intended to show the flow of data, not the Enterprise
Objects Framework architecture as such. For a graphical depiction of
the Enterprise Objects Framework architecture, see the chapter “What
Is Enterprise Objects Framework?” on page 19

The steps illustrated in Figure 47 are described in detail in the following
sections.

EODisplayGroup Receives a fetch Message
A fetch most often begins with an EODisplayGroup receiving a fetch
message. If you’ve configured the display group to “fetch on load,”
the fetch occurs at the end of display group initialization.

When a display group receives a fetch message, the following sequence
of events occurs:

1. The display group sends its EODataSource a fetchObjects
message, which for the EODatabaseDataSource subclass results
in a fetch against a specific EOEntity.

2. The EODatabaseDataSource constructs an EOFetchSpecification
for the database data source’s EOEntity (if a fetch specification
doesn’t already exist) and passes the specification to its
EOEditingContext in an objectsWithFetchSpecification message
(objectsWithFetchSpecification: in Objective-C).

The database data source would already have a fetch specification
if you assigned one programmatically or if you assigned one in
Interface Builder (or WebObjects Builder in a WebObjects
application). Fetch specifications are handled differently
depending on how they’re configured. This discussion assumes
that the fetch specification is a “regular” fetch specification—one
that isn’t configured to fetch raw rows, to use a custom SQL
statement, or to use a stored procedure.

3. The receiving editing context forwards this request,
in the form of a objectsWithFetchSpecification message
(objectsWithFetchSpecification:editingContext: in Objective-C),
to its parent object store, eventually reaching the root object
store (which is usually an EOObjectStoreCoordinator).
191

Chapter 7 Behind the Scenes
An EOObjectStoreCoordinator manages one or more
EODatabaseContexts or other EOCooperatingObjectStores.

4. The EOObjectStoreCoordinator determines which of
its EOCooperatingObjectStores should service the fetch
specification and forwards the EOCooperatingObjectStore
an objectsWithFetchSpecification message
(objectsWithFetchSpecification:editingContext: in Objective-C)
to ask it to actually retrieve data from the database.

Note: A fetch operation is always performed with an editing context,
which holds all of the objects it fetches (an editing context usually
performs multiple fetches over the course of an application). Objects
are kept unique within an editing context, so if an enterprise object
instance already exists for a fetched row, that object is simply returned
as the fetched object (possibly with updated values, as described
below). Any faults created for fetched objects likewise belong to the
editing context and are kept unique within it.

Inside EODatabaseContext
When an EODatabaseContext receives a fetch request
in the form of an objectsWithFetchSpecification message
(objectsWithFetchSpecification:editingContext: in Objective-C), it fetches
a number of rows from the database, transforms them into enterprise
objects, and registers them as needed with the EOEditingContext that
received the initial objectsWithFetchSpecification message.

To do this it uses an EODatabaseChannel, whose job is specifically
to fetch enterprise objects. The database channel in turn uses an
EOAdaptorChannel for low-level communication with the database,
along with whatever model objects—EOEntities, EOAttributes, and
EORelationships—are needed to perform the fetch.
192

Fetching Objects
Fetching objects happens in two major steps:

1. The database context uses the database channel to select the rows
in the database for which objects are being fetched. To do this, it
uses the EODatabaseChannel selectObjectsWithFetchSpecification
method (selectObjectsWithFetchSpecification:editingContext:
in Objective-C), passing in the fetch specification. Minimally,
the fetch specification identifies the EOEntity for the objects,
which in turn specifies the enterprise object class to instantiate for
every object fetched. If you provided the fetch specification that’s
used, it can also contain a qualifier that restricts the objects to fetch
to those that meet specified criteria and a sort ordering with which
to sort the objects. The section “Inside EODatabaseChannel” on
page 195” describes in detail how the fetch specification is
handled.

2. The database channel fetches each enterprise object, one at a time,
as the database context repeatedly sends it the message
fetchObject . This method uses state built up in the select step to
get data for the object, create an instance if necessary, and register
the new object with the editing context.

Customizing Framework Behavior
At this stage in the fetching process, there are several ways you can
customize the Framework’s default behavior. To get fine-grained control
over a database context, you can assign a delegate to it and implement any
of the following methods.

EODatabaseContext Delegate Methods

Java Method Objective-C Method Description

databaseContext
ShouldSelectObjects

databaseContext:
shouldSelectObjects
WithFetchSpecification:
databaseChannel:

This method is invoked right
before a SELECT occurs. You
can return false (NO) to tell the
channel to skip the SELECT and
return; you might want to do this
to issue your own custom SQL
against the adaptor.
193

Chapter 7 Behind the Scenes
With respect to locking, note that in addition to setting an overall locking
strategy, you can take advantage of EODatabaseContext’s “on demand”
locking feature to lock individual rows. For more information, see
“Locking and Update Strategies” on page 217.

An EODatabaseContext also posts notifications that your objects can
receive and react to.

databaseContext
ShouldUsePessimisticLock

databaseContext:
shouldUsePessimisticLock
WithFetchSpecification:
databaseChannel:

You can use this delegate
method to selectively turn off the
locking of rows when you’re
using a pessimistic locking
strategy.

databaseContext
DidSelectObjects

databaseContext:
didSelectObjects
WithFetchSpecification:
databaseChannel:

This method is invoked
immediately after a SELECT
occurs. You can use it to log
diagnostic information or set up
internal state for the coming
fetch.

databaseContext
ShouldFetchObjects

databaseContext:
shouldFetchObjects
WithFetchSpecification:
editingContext:

You can use this method to
satisfy the EOEditingContext’s
fetch request from a local cache.

databaseContext
DidFetchObjects

databaseContext:
didFetchObjects:
fetchSpecification:
editingContext:

This method is invoked after an
EODatabaseContext fetches
objects. You can use this method
to record in a local cache the
results of a fetch.

EODatabaseContext Notifications

Notification Description

DatabaseChannelNeededNotification
(EODatabaseChannelNeededNotification
in Objective-C)

This notification is broadcast whenever an
EODatabaseContext is asked to perform an
object store operation and it doesn’t have an
available EODatabaseChannel. Subscribers
can create a new channel and add it to the
EODatabaseContext at this time.

EODatabaseContext Delegate Methods (Continued)

Java Method Objective-C Method Description
194

Fetching Objects
Inside EODatabaseChannel
In fetchObject , an EODatabaseChannel performs several tasks:

1. Before anything else can be done, the EODatabaseChannel
must read some data from the database. It does so by having
its EOAdaptorChannel retrieve a record for the EOEntity being
fetched, including the primary key, class properties, attributes
used for locking, and any foreign keys used by EORelationships.

2. The first thing the database channel does with the fetched record
is to get an EOGlobalID for it from the EOEntity by invoking
globalIDForRow (globalIDForRow: in Objective-C).

3. The EODatabaseChannel records a snapshot for the fetched row.
This step can be fairly complicated, as there may already be
a snapshot recorded under the globalID. If there isn’t, the
EODatabase object is simply sent a recordSnapshotForGlobalID
message (recordSnapshot:forGlobalID: in Objective-C). If there is a
snapshot, however, a decision must be made on how to update the
recorded snapshot. You can use the EODatabaseContext delegate
method databaseContextShouldUpdateCurrentSnapshot to
intervene at this point (in Objective-C, databaseContext:
shouldUpdateCurrentSnapshot:newSnapshot:globalID:
databaseChannel:).

If the fetch specification is set to refresh refetched
objects, an ObjectsChangedInStoreNotification
(EOObjectsChangedInStoreNotification in Objective-C) is
posted to invalidate (refault) any existing instances corresponding
to this globalID.

4. The database channel records whether the object was locked when
it was selected.

5. The database channel then checks with the editing context, using
objectForGlobalID (objectForGlobalID: in Objective-C), to see
whether a copy of the object already exists in that context.

6. If the editing context already has an enterprise object for the global
ID—and if it isn’t a fault—then it’s simply returned; otherwise it
returns null (nil in Objective-C).
195

Chapter 7 Behind the Scenes
7. If the editing context has no object or fault for the globalID, the
database channel invokes the EOEntityClassDescription method
createInstanceWithEditingContext
(createInstanceWithEditingContext:globalID:zone: in
Objective-C).This method finds out what the object’s class
should be from the EOEntity and creates an object of that class.

The createInstanceWithEditingContext method provides the
enterprise object class’s constructor with an editing context, the
entity class description, and a globalID. You’ll rarely need to use
this information at this point, but you might choose to if, for
example, you need to extract the primary key from the globalID
to do some processing on it.

Note that in Objective-C, the entity class description
creates objects and initializes them with the method
initWithEditingContext:classDescription:globalID: , if it exists
(it uses init otherwise). Your enterprise object class can implement
initWithEditingContext:classDescription:globalID: instead of simply
init if you need to do anything with the object’s editing context,
class description, or globalID at this stage in the process.

8. The database channel invokes the editing context’s recordObject
method (recordObject:globalID: in Objective-C), in which the
newly created object gets uniqued.

9. If the editing context has a fault for the globalID, the fault is
cleared and initialization proceeds just as if an empty enterprise
object had been created and registered.

10. To initialize the object, database channel sends
the editing context an initializeObject message
(initializeObject:withGlobalID:editingContext: in Objective-C),
which is passed down the object store hierarchy. If the
editing context is nested, it passes the message to its parent
EOEditingContext. If the parent EOEditingContext has an
object with a matching globalID, that object is used to initialize
the child object. Otherwise, the message is passed down to the
EODatabaseContext, which initializes the new instance from
the appropriate snapshot and creates faults for its relationships.
The EODatabaseContext’s initializeObject method sets the
196

Fetching Objects
object’s properties using the key-value coding method
takeStoredValueForKey (takeStoredValue:forKey: in Objective-C).

11. The database channel sends the enterprise object an
awakeFromFetch message (awakeFromFetchInEditingContext: in
Objective-C). Custom enterprise object classes can override this
method to perform additional initialization after an object has been
created from a database row and initialized from database values.

Your custom enterprise object classes can also implement the
method awakeFromInsertion (awakeFromInsertionInEditingContext:
in Objective-C), which is invoked immediately after your
application creates a new object and inserts it into an
EOEditingContext. This method lets you assign values to newly
created enterprise objects. For more discussion of this topic, see
the chapter “Designing Enterprise Objects” on page 65.

Customizing Framework Behavior
At this stage in the fetching process, you can intervene during step 5
above by assigning a delegate to the EODatabaseContext and
implementing any of the following methods.

EODatabaseContext Delegate Methods

Java Method Objective-C Method Description

databaseContext
FailedToFetchObject

databaseContext:
failedToFetchObject:
globalID:

This method is invoked when a
to-one fault can’t find its data in
the database. This often occurs
due to referential integrity
problems in the database. You
can use this method to intervene
and take appropriate action (for
example, by displaying an alert
panel or initializing a fault object
with new values).

databaseContext
ShouldLockObject
WithGlobalID

databaseContext:
shouldLockObject
WithGlobalID:
snapshot:

This method is invoked from
lockObjectWithGlobalID:editing
Context:. You can use this
method to implement your own
locking procedure.
197

Chapter 7 Behind the Scenes
Flow of Data During a Fetch
The preceding sections describe what happens in Enterprise Objects
Framework when you fetch objects from the database. This section
describes the flow of data that occurs during a fetch.

Figure 48 shows how a new object gets instantiated with database data.
The scenario it depicts is fetching a single, new object from the database.

databaseContext
ShouldRaiseException
ForLockFailure

databaseContext:
shouldRaiseException
ForLockFailure:

You can use this method to
suppress an exception that
occurred during an
EODatabaseContext’s attempt
to lock an object.

databaseContext
ShouldUpdate
CurrentSnapshot

databaseContext:
shouldUpdate
CurrentSnapshot:
newSnapshot:
globalID:
databaseChannel:

This method is invoked when an
EODatabaseContext already
has a snapshot for a row fetched
from the database. You can use
this method to compare the
snapshots, possibly resolve
conflicts, and instruct the
EODatabaseContext to use the
new snapshot instead of the
existing one.

EODatabaseContext Delegate Methods (Continued)

Java Method Objective-C Method Description
198

Fetching Objects
Figure 48. Flow of Data During a Fetch

This process is described in greater detail below.

Number empID

011011011000010011010011011

String firstName

String lastName

Number deptID

firstName: Chris
lastName: Walsh
department: Department

215
Chris
Walsh
116

empID
firstName
lastName
deptID

215 Chris Walsh 116

EMPID FIRSTNAME LASTNAME DEPTID

EOModel

.m
199

Chapter 7 Behind the Scenes
The following sequence of events occurs when an object is fetched from
the database:

1. A database row is fetched as raw binary data.

2. The values retrieved from the database are converted from their
database-specific types to instances of standard value classes:

NULL values in the database are mapped to instances of
EONullValue (EONull in Objective-C).

Additionally, you can map external data types to custom value
classes defined by your application. For more discussion of this
subject, see the chapter “Advanced Enterprise Object Modeling”
on page 105.

3. Once the data has been converted to objects, these objects are put
in an NSDictionary. The elements of the dictionary correspond to
columns (attributes) in the database table: Their names are the
names of the attributes as used by the client application, and their
values are the values in the database. The EOModel is used to
determine the mapping from external (database) data types to
internal (Objective-C) types.

The dictionary provides a snapshot of the database row, and it’s
later used to initialize the enterprise object. The snapshot also
comes into play when changes to the object are saved to the
database; for more discussion of this topic see the section
“Snapshots” on page 204.

Java Class Objective-C Class Type of Data

String NSString character strings

NSGregorianDate NSCalendarDate dates and times

Number or
BigDecimal (java.math)

NSNumber or
NSDecimalNumber

numbers

NSData NSData arbitrary binary data (BLOBs)
200

Fetching Objects
The EOModel, which is used to convert database data to objects,
is also used when a newly allocated enterprise object is initialized.
Whereas the dictionary contains an entry for each of the row’s
columns (those returned by sending attributesToFetch to an
EOEntity), the enterprise object initialized from the dictionary
only contains the attributes that are defined in the EOModel as
class properties.

4. A new enterprise object is allocated by EOEntityClassDescription
as an object of the Employee class, as determined from the
EOModel.

5. The enterprise object is initialized from a row snapshot, using the
EOModel. Only objects that are class properties are included.

When an enterprise object is initialized, EONullValue objects
(or EONull objects in Objective-C) are passed to the object as null
(nil in Objective-C) so you don’t have to write code to handle
NULLs.

Also, relationship references are initialized for any relationship
properties defined in the EOModel. For example, an Employee
object might have a reference to the employee’s department,
which in database terms represents a join between the
EMPLOYEE and DEPARTMENT tables. Class properties that
are relationships are represented in the object graph as faults until
they’re accessed.

Uniquing, Snapshots, and Faults
When you fetch objects in an Enterprise Objects Framework application,
the Framework has mechanisms for ensuring that the integrity of the
fetched data is maintained. To this end, the Framework implements
these features:

• Uniquing

Enterprise Objects Framework maintains the mapping of each
enterprise object to its corresponding database row, and uses this
information to ensure that your object graph does not have two
(possibly inconsistent) objects for the same database row.
201

Chapter 7 Behind the Scenes
• Snapshots

When objects are fetched, Enterprise Objects Framework records
the state of the corresponding database row. This information is
used when changes are saved back out to the database to ensure
that the row data has not been changed by someone else since it
was last fetched. The information is also used to only update
attributes that have changed, rather than all of them.

• Faults

The objects at the destination of a fetched object’s relationships
are only fetched on demand; however, these objects are
represented in your application by stand-in objects called faults to
make retrieval of the actual objects easier.

These topics are discussed in more detail in the following sections.

Uniquing
In marrying relational databases to object-oriented programming, one of
the key requirements is that a row in the database be associated with only
one enterprise object in a given context in your application. Uniquing of
enterprise objects limits memory usage and allows you to know with
confidence that the object you’re interacting with represents the true
state of its associated row as it was last fetched into the object graph.

Without uniquing, you’d get a new enterprise object every time you fetch
its corresponding row, whether explicitly or through resolution of
relationships. This is illustrated in Figure 49.
202

Fetching Objects
Figure 49. Uniquing of Enterprise Objects

Uniquing occurs in the control layer, and it’s based on an object’s
globalID. A globalID consists of an object’s primary key and its associated
entity. When a row is fetched to create an object in a particular
EOEditingContext, its globalID is checked against the objects already
in the EOEditingContext. If a match is found, the newly fetched object
isn’t added to the context.

A single enterprise object instance exists in one and only one
EOEditingContext, but multiple copies of an object can exist in different
editing contexts. In other words, object uniquing is scoped to a particular
editing context.

Without Uniquing

With Uniquing

manager

manager

manager

Kai KaiKai

Cary John

This shows the enterprise objects
that would exist after fetching
three employee objects without
uniquing. Kai is Cary’s and John’s
manager. On fetching an object
for Cary, an object representing
Kai is created to resolve the
manager relationship. If you then
fetch an object for Kai, a separate
object is created. Fetching an
object for John then causes yet
another object representing Kai
to be created. Kai’s row in the
database can be altered between
any of these individual fetches,
resulting in objects representing
the same row, but with different data.

Kai

Cary John

Using uniquing results in only
one object ever being created for
Kai. In this case, even though
Kai’s row can be changed, your
application has a single view of
Kai’s data. The data may not reflect
what’s in the database if another
user changes it, but there’s no
ambiguity within your application.
203

Chapter 7 Behind the Scenes
Snapshots
When an EODatabaseContext fetches objects from the database, it asks
its EODatabase to record a snapshot of the state of the corresponding
database row.

A snapshot is a dictionary object recording a row’s primary key, class
properties, foreign keys for class property relationships, and the attributes
of that object that are used for locking during an update. (Primary keys
and attributes used for locking are defined in a model; see the book
Enterprise Objects Framework Tools and Techniques.) A snapshot is recorded
under the globalID of its enterprise object whenever the object is fetched
or modified.

When changes to an object are saved to the database, the snapshot is
compared with the corresponding database row to ensure that the row
data hasn’t changed since the object was last fetched. For a discussion of
how this relates to the update strategy you set for your application, see the
section “Locking and Update Strategies” on page 217.

For more information on snapshots, see the EODatabaseContext class
specification in the Enterprise Objects Framework Reference.

Faults
One of the most powerful and useful features of the Framework’s
database level is that it automatically resolves the relationships defined in
a model. It does so by delaying the actual retrieval of data—and
communication with the database—until the data is needed. This
delayed resolution of relationships occurs in two stages: the creation of a
placeholder object for the data to be fetched, and the fetching of that data
only when it’s needed.

When the database level fetches an object, it examines the relationships
defined in the model and creates objects representing the destinations of
the fetched object’s relationships. For example, if you fetch an employee
object, you can ask for its manager and immediately receive an object;
you don’t have to get the manager’s employee ID from the object you just
fetched and fetch the manager yourself.

The database level doesn’t immediately fetch data for the destination
objects of relationships, however. Fetching is fairly expensive, and
204

Fetching Objects
further, if the database level fetched objects related to the one explicitly
asked for, it would also have to fetch the objects related to those, and so
on, until all of the interrelated rows in the database had been retrieved.
To avoid this waste of time and resources, the destination objects created
are stand-ins, or faults.

Faults come in two varieties: single-object faults for to-one relationships,
and array faults for to-many relationships. In Java, a single-object fault is
merely a partially initialized enterprise object. It’s been created with a
constructor of the form:

public MyCustomEO (
EOEditingContext anEOEditingContext,
EOClassDescription anEOClassDescription,
EOGlobalID anEOGlobalID)

and so is already associated with a particular editing context, a class
description, and a globalID. However, the object’s data hasn’t yet been
fetched from the database. This part of the object’s initialization is
delayed until the object receives a message which requires it to fetch its
data.

In Objective-C on the other hand, single-object faults are objects of a
special class (EOFault) whose instances transform themselves into actual
enterprise objects—and fetch their data—the first time they’re accessed.
These Objective-C faults occupies the same amount of memory as an
instance of the target class (into which it’s eventually transformed), and
stores the information needed to retrieve the data associated with the
fault (the source globalID and relationship name). A fault object thus
consumes about as much memory as an empty instance of its target class.

An Objective-C fault behaves in every way possible as an instance of its
target class until it receives a message it can’t cover for. For example, if
you fetch an Employee object and ask for its manager, you get a fault
object representing another Employee object. If you send a class
message to this fault object, it returns the Employee class. If you send
the fault object a message requesting the value of an attribute, such as
lastName , however, it uses the EODatabaseContext that created it to
retrieve its data from the database, overwrites its class identity, and
invokes the target class’s implementation of lastName .

Figure 50 illustrates this process.
205

Chapter 7 Behind the Scenes
Figure 50. Resolution of a Fault Object

manager

Veasey

MacAskill Jane 507 Nov-19-1992

Veasey Kai 512 Apr-05-1988

Last Name First Name ProjID ProjDate

MacAskill Jane 507 Nov-19-1992

Veasey Kai 512 Apr-05-1988

Last Name First Name ProjID ProjDate

lastNam
e

MacAskill Jane 507 Nov-19-1992

Veasey Kai 512 Apr-05-1988

Last Name First Name ProjID ProjDate

lastName

The Employee Object
“Jane MacAskill” is fetched from
the database. Instead of fetching
the data for Jane’s manager
(Kai Veasey) right away, the
Framework creates a fault
containing the value of the
foreign key for Jane’s manager
relationship. The graphic for
the fault has an empty center
with a key in it, indicating that it
contains no real values yet.
The bottom half of the object
shows the messages the fault
can respond to without first
having to fetch its data.

Employee

The fault receives a message
it can’t cover for (lastName).

The fault fetches its data from
the database and invokes
its lastName method.

The string “Veasey” is returned.
206

How Changes are Distributed and Applied
Array faults are treated similarly by both languages. They behave as
instances of the NSMutableArray class, and are triggered to fetch their
objects by any request for a member object or for the number of objects
in the array (the number of objects for a to-many relationship can’t be
determined without actually fetching them all).

For more information on faults, see the EOFaulting interface
specification (Java only), the EOFault class specification (Objective-C
only), and the EOFaultHandler class specification (or both languages)
in the Enterprise Objects Framework Reference.

Uniquing and Faults
When an EODatabaseChannel constructs a fault for a to-one relationship,
it checks the globalID for the destination to see whether that object
already exists in the EOEditingContext. If so, it simply uses that object
to immediately resolve the relationship. This preserves the uniqueness
requirement for enterprise objects, in that there’s never more than
one globalID representing the same row in the database. Whether that
globalID represents an actual enterprise object or a fault doesn’t matter,
since the data will be fetched when it’s needed.

Similarly, if an EODatabaseChannel fetches data for an object that’s
already been created as a fault, the EODatabaseChannel fires the fault.
In Java, this simply means that it finishes initializing the object with the
data it’s fetched. In Objective-C, this means that the database channel
turns the fault into an instance of its target class, without changing its id, and
then initializes the resulting enterprise object. In either case, the process
is essentially the same whether you fetch the fault’s data or whether the
fault fetches the data itself upon being sent a message.

How Changes are Distributed and Applied

An EOEditingContext is responsible for managing the changes that
occur to the objects in its object graph. For example, suppose the user
edits a value in the user interface in an Application Kit application.
This causes the sequence of events illustrated in Figure 51.
207

Chapter 7 Behind the Scenes
Figure 51. Flow of Events When a User Edits Data

EOAssociation

EODisplayGroup

EOAssociation

EODisplayGroup

1. User edits value
 in user interface.

2. EOAssociation
 passes new value
 to EODisplayGroup.

3. EODisplayGroup
 applies change to
 enterprise object.

4. Enterprise object informs
 EOEditingContext of change.

5. EOEditingContext
 records change.

6. EOEditingContext
 broadcasts change.

7. EODisplayGroup
 notifies
 EOAssociations.

8. EOAssociation
 updates user interface
 with new values.

EOEditing
Context
208

How Changes are Distributed and Applied
When a user edits data in the user interface:

1. The EOAssociation passes the new value to its EODisplayGroup.

2. The display group applies the changes to the affected enterprise
object.

3. The enterprise object notifies the EOEditingContext that it has
changed. Specifically, the enterprise object invokes its willChange
method, which in turn invokes the editing context’s
objectWillChange method (objectWillChange: in Objective-C).

4. The editing context records the object in its list of unprocessed
changes. (How the editing context manages these changes is
described in “How an EOEditingContext Manages Changes to Its
Objects” on page 210.)

Then, at the end of the event loop:

5. The editing context records undos.

6. The editing context broadcasts an
ObjectsChangedInStoreNotification and an
ObjectsChangedInEditingContextNotification
(EOObjectsChangedInStoreNotification and
EOObjectsChangedInEditingContextNotification
in Objective-C).

7. The display group, which is registered to observe the
ObjectsChangedInEditingContextNotification, receives
the notification and updates the user interface.

8. All views of the data in the application refresh themselves to reflect
the change.
209

Chapter 7 Behind the Scenes
Customizing Framework Behavior
During this process, you can customize the behavior of the
EOEditingContext by registering for the following notifications
and taking the appropriate action.

How an EOEditingContext Manages Changes
to Its Objects
From the standpoint of an EOEditingContext, the changes you make
to objects in an application fall into one of three categories:

• Insertion of a new object
• Deletion of an existing object
• Modification (updating) of an existing object

Normally, when an editing context’s objects change (for example, when
they’re deleted or their data is modified), the processing of changes is
deferred until the end of the current event. In the meantime, the editing
context buffers pending insertions, deletions, and updates as
unprocessed changes.

EOEditingContext Notifications

Notification Description

ObjectsChangedInStoreNotification
(EOObjectsChangedInStoreNotification
in Objective-C)

This notification is broadcast whenever
objectWillChange observer notifications
are processed, which is usually at the
end of the event in which the changes
occurred.

ObjectsChangedInEditingContextNotification
(EOObjectsChangedInEditingContextNotification
in Objective-C)

This notification is broadcast whenever
changes are made in an
EOEditingContext. It’s similar to
EOObjectsChangedInStoreNotification,
except that it contains objects rather
than globalIDs. EODisplayGroups listen
for this notification to redisplay their
contents.
210

How Changes are Distributed and Applied
Note: When a source (master) object has an owning relationship to a
destination object (as determined from the EOClassDescription) and
the destination object is removed from the master, the destination
object is marked for deletion from the EOEditingContext. For
example, if a purchase order owns a line item and the line item is
removed from the purchase order, the line item is marked for deletion
from the editing context since the owning relationship implies that a
line item can’t exist without a purchase order.

When an EOEditingContext processes changes, typically at the end of an
event, it does the following to the objects in its unprocessed changes list:

1. Processes deleted objects.

For a more detailed description of what this entails, see the
following section, “How Deleted Objects are Processed.”

2. Moves each object to the context’s inserted, deleted, or updated
list, as appropriate.

3. Snapshots the objects for undo.

4. Posts ObjectsChangedInStoreNotification and
ObjectsChangedInEditingContextNotification.

How Deleted Objects are Processed
Just like inserted and updated objects, deleted objects are normally
processed at the end of the event in which the change was made.
However, you can use the method setPropagatesDeletesAtEndOfEvent
(setPropagatesDeletesAtEndOfEvent: in Objective-C) to change this
behavior so that the editing context only processes deletions right before
you save to the database.

The processing of deleted objects entails these steps:

1. Deletions are propagated by sending each object
a propagateDeleteWithEditingContext message
(propagateDeleteWithEditingContext: in Objective-C),
which then invokes the EOClassDescription method
propagateDeleteForObject
(propagateDeleteForObject:editingContext: in Objective-C).
211

Chapter 7 Behind the Scenes
By default, this method applies the delete rule of every
relationship (Deny, Nullify, Cascade) to the source object’s
child objects.

2. The deletion is validated by sending each object the message
validateForDelete .

By default, each object forwards this message to its
EOClassDescription. Based on the result, the operation is either
allowed or refused. For example, referential integrity constraints
in your model might state that you can’t delete a Department
object that still has employees. If a user attempts to delete a
department that has employees, the deletion is refused. An
enterprise object class can also implement its own version of
validateForDelete to do some additional processing before passing
the check on to its EOClassDescription. For more discussion of
validation, see the chapter “Designing Enterprise Objects” on
page 65.

Instead of waiting until the end of the event, you can force the
processing of inserted, updated, and deleted objects by invoking the
EOEditingContext method processRecentChanges . EOEditingContext
invokes this method on itself before performing certain operations such
as saveChanges . The sequence of events that occurs when an editing
context receives the message saveChanges is described in the next
section.

Saving Changes

In a running application, the changes users make to objects are reflected
in the object graph managed by an EOEditingContext and in the user
interface. However, the database isn’t updated to reflect these changes
until there is an explicit request (typically issued by the user) to save.
The sequence of events in a save operation is illustrated in Figure 52.
212

Saving Changes
Figure 52. Saving to the Database

When an EOEditingContext receives a request to save in the form
of a saveChanges message, the following sequence of events occurs:

1. The editing context sends it editors and delegates the message
editingContextWillSaveChanges .

2. The editing context processes, propagates, and validates deletes.

3. The editing context processes and validates changes for saving.

Relational
Database

EOAdaptor

EODatabase EOModel
Group

1. EOEditingContext
 receives a
 request to save.

2. EOEditingContext
 passes the request
 to its parent
 EOObjectStore.

3. The EOObject-
 StoreCoordinator
 forwards a sequence
 of save operations
 to each of its
 EODatabaseContexts.

4. Each EODatabase-
 Context analyzes
 the changes in
 the object graph of
 the EOEditingContext
 and passes a
 list of adaptor
 operations to the
 EOAdaptorChannel.

5. The EOAdaptorChannel
 updates the database.

EOAdaptor
Context

EOObjectStore
Coordinator

EOEditing
Context

EOAdaptor
Channel

EODatabase
Channel

EODatabase
Context
213

Chapter 7 Behind the Scenes
4. The editing context commits the changes made to its objects
to its parent object store by sending the parent the message
saveChangesInEditingContext (saveChangesInEditingContext:
in Objective-C). If the editing context is not nested, its parent
is typically an EOObjectStoreCoordinator. When an
EOObjectStoreCoordinator receives this message, it guides its
EOCooperatingObjectStores through a multi-pass save protocol
in which each cooperating store saves its own changes and forwards
remaining changes to other cooperating stores.

5. After it receives the message saveChangesInEditingContext ,
the object store coordinator sends each of its cooperating
stores a prepareForSaveWithCoordinator message
(prepareForSaveWithCoordinator:editingContext: in Objective-C),
which informs them that a multi-pass save operation is beginning.
When the cooperating store is an EODatabaseContext, it takes this
opportunity to generate primary keys for any new objects in the
editing context.

6. The coordinator sends each of its cooperating stores the message
recordChangesInEditingContext , which prompts them to examine
the changed objects in the editing context, record any operations
that need to be performed, and notify the coordinator of any
changes that need to be forwarded to other cooperating stores.
For example, if in its recordChangesInEditingContext method
one cooperating store notices the removal of an object from
an “owning” relationship but that object belongs to another
cooperating store, it informs the other store by sending
the coordinator a forwardUpdateForObject message
(forwardUpdateForObject:changes: in Objective-C).

7. The coordinator sends each of its cooperating stores the message
performChanges . This tells the stores to transmit their changes
to their underlying databases. When the cooperating store is an
EODatabaseContext, it responds to this message by taking the
EODatabaseOperations that were constructed in the previous step,
constructing EOAdaptorOperations from them, and giving the
EOAdaptorOperations to an available EOAdaptorChannel for
execution.
214

Saving Changes
8. If performChanges fails for any of the EOCooperatingObjectStores,
all stores are sent the message rollbackChanges .

9. If performChanges succeeds for all EOCooperatingObjectStores,
the receiver sends them the message commitChanges , which has
the effect of telling the adaptor to commit the changes.

10. If commitChanges fails for a particular cooperating store, that store
and all subsequent ones are sent the message rollbackChanges .
However, the stores that have already committed their changes
do not roll back. In other words, the EOObjectStoreCoordinator
doesn’t perform the two-phase commit protocol necessary to
guarantee consistent distributed update.

11. If the save operation was successful, the editing context updates its
object snapshots.

12. Once it has committed its changes to its parent object store, the
editing context posts the
EditingContextDidSaveChangesNotification
(EOEditingContextDidSaveChangesNotification in Objective-C).

Customizing Framework Behavior
You can customize the behavior a save operation by assigning delegates to
EOEditingContext and EOAdaptorChannel, and implementing the any
of the following delegate methods.

EOEditingContext Delegate Methods

Java Method Objective-C Method Description

editingContext
ShouldValidateChanges

editingContext
ShouldValidateChanges:

This method is invoked when an
EOEditingContext receives a
saveChanges message. If the
delegate returns false (NO),
changes are saved without first
performing validation. You can
use this method to provide your
own validation mechanism.
215

Chapter 7 Behind the Scenes
You can also register to receive the notifications listed below

 editingContext
WillSaveChanges

editingContext
WillSaveChanges:

This method is invoked when an
EOEditingContext receives a
saveChanges message. You can
use this method to perform other
pre-save validation.

EOAdaptorChannel Delegate Methods

Java Method Java Method Description

databaseContextWillOrder
AdaptorOperations

databaseContext:
willOrder
AdaptorOperations
FromDatabaseOperations:

This method is invoked when
EODatabaseContext receives a
performChanges message. You
can use this method to construct
your own adaptor operations, for
instance, possibly transform a
delete operation into an update,
or a stored procedure
invocation.

databaseContext
WillPerform
AdaptorOperations

databaseContext:
willPerform
AdaptorOperations:
adaptorChannel:

This method is invoked from the
EODatabaseContext
performChanges method. This
method is useful for applications
that need a special ordering of
adaptor operations; for example,
to avoid violating any database
referential integrity constraints.

EOEditingContext Notifications

Notification Description

EditingContextDidSaveChangesNotification
(EOEditingContextDidSaveChangesNotification
in Objective-C)

This notification is broadcast after
changes are saved to the editing
context’s parent object store.

ObjectsChangedInStoreNotification
(EOObjectsChangedInStoreNotification
in Objective-C)

This notification is broadcast by the
database context when object
updates are committed to the
database.

EOEditingContext Delegate Methods (Continued)

Java Method Objective-C Method Description
216

Saving Changes
Locking and Update Strategies
An update operation includes the following ingredients:

• An enterprise object whose data values have been changed

• A means of identifying the row in the database that corresponds to
the object

• A strategy for handling update conflicts—either by preventing
them from occurring, or by detecting and handling them when they
do occur.

There must also be a transaction in progress.

The “means of identifying” a row is the primary key or global ID.

An update strategy determines how updates should be made in the face
of changes by others. For example, one strategy is to lock a row when it
is read so that no one else can change it until you’re done with it; this is
called pessimistic locking. Another strategy is to compare the state of a row
as you fetched it—that is, the row’s snapshot—with the database row at
update time to confirm that the database row hasn’t been changed
by someone else. This is called optimistic locking, because it assumes a
conflicting update won’t occur, but does check at the last minute. You
can set your update strategy using the EODatabaseContext method
setUpdateStrategy (setUpdateStrategy: in Objective-C). Optimistic
locking is the default.

Enterprise Objects Framework also supports “on-demand” locking,
in which specific optimistic locks can be promoted to database locks
during the course of program execution. In other words, you can lock
single objects. There are three ways to use on-demand locking.
Use the EODatabaseContext method lockObjectWithGlobalID
(lockObjectWithGlobalID:editingContext: in Objective-C) to lock a
database row for a particular object. Use the EODatabaseContext
method objectsWithFetchSpecification
(objectsWithFetchSpecification:editingContext: in Objective-C)
with a fetch specification that’s configured to lock rows as they’re
fetched. Or use the EOEditingContext method lockObject (lockObject:
in Objective-C).
217

Chapter 7 Behind the Scenes
Handling Conflicts
The locking approach you use determines at what point conflicts are
detected and how you can handle them.

• Pessimistic locking

When you use pessimistic locking, conflicts are detected as soon
as you fetch a row. This is because when you fetch a row with
pessimistic locking, you attempt to put a lock on it. If someone
else has a lock on the row, the lock (and hence, the fetch
operation) is refused. Your application can display a panel at that
point telling the user to try again later.

Since pessimistic locking puts a lock on a row when it fetches it,
you can generally assume that you won’t experience conflicts
when you save changes. However, this behavior is ultimately
dependent on how the database server handles locks.

• Optimistic locking

When you use optimistic locking, conflicts aren’t detected until
you attempt to save. At that point, the database row is checked
against the snapshot to make sure the row hasn’t changed. If the
row and the snapshot don’t match, the save operation is aborted,
the transaction is rolled back, and an exception is thrown.
To handle the error you can catch the exception, refresh the
conflicted object from the updated database data, and save again.

• On-demand locking

On-demand locking mixes characteristics of both pessimistic and
optimistic locking. With on-demand locking, you’ve already
fetched the object, and you’re trying to get a lock on it after the
fact. When you try to get a lock on the object’s corresponding
database row, you can get a failure for one of two reasons: either
because the row doesn’t match the snapshot (optimistic locking),
or because someone else has a lock on the row on the server
(pessimistic locking).
218

Transactions
When on-demand locking fails for either reason, it throws an
exception. To handle the error you can catch the exception,
refresh the conflicted object from the updated database data, and
try to get a lock on it again.

As with pessimistic locking, because on-demand locking locks the
row, you can generally assume that you won’t experience conflicts
when you save changes. Again, this behavior is ultimately
dependent on how the database server handles locks.

Transactions

For the most part, Enterprise Objects Framework handles transactions
for you. You rarely (if ever) need to explicitly start or end a transaction
yourself—it generally happens as the by-product of another operation,
such as a fetch or save. However, understanding how transactions are
handled in the Framework can help you to make the right decisions for
your application.

How transactions are handled in the Framework depends on the locking
mode you have set. There are three different possibilities:

• Optimistic locking
• Pessimistic locking
• “On-demand” locking of individual objects

For a detailed description of these locking modes, see the section
“Locking and Update Strategies” on page 217.

The way that each of these modes affects transactions is described in the
following sections.

Transactions and Optimistic Locking
If you’re using optimistic locking (the default) and you’re just fetching
objects, Enterprise Objects Framework never explicitly starts or stops
transactions. Instead, when a SELECT is performed on a database row,
opening (and subsequently closing) a transaction is typically handled by
the database server itself, implicitly. Ultimately, it is the responsibility of
the adaptor for each database server to ensure that the right thing happens.
219

Chapter 7 Behind the Scenes
Under optimistic locking, Enterprise Objects Framework explicitly starts
a transaction when you perform a save operation. A save operation
consists of three basic parts:

• Beginning a transaction
• Performing the specified operations (including checking

snapshots)
• Committing the transaction, or rolling back if the transaction fails.

In either case, the transaction is closed.

Transactions and Pessimistic Locking
When you use pessimistic locking, Enterprise Objects Framework
explicitly starts a transaction as soon as you fetch objects, and every object
you fetch is locked. The transaction stays open until you commit it (using
the EOEditingContext method saveChanges), or roll it back (using the
EOEditingContext method invalidateAllObjects).

Consequently, using pessimistic locking is very expensive. It’s not
suitable for applications that have user interaction since large portions of
your database could be locked down for indeterminate periods of time. A
good alternative to pessimistic locking is using on-demand locking to lock
individual objects.

Transactions and On-Demand Locking
When you use on-demand locking to get a server lock on an object,
Enterprise Objects Framework explicitly opens a transaction and keeps
it open as long as you have a lock on the object. The transaction stays
open until you commit it (using the EOEditingContext method
saveChanges), or roll it back (using the EOEditingContext method
invalidateAllObjects).
220

Answers to Common
Design Questions

Chapter 8

This chapter answers questions to common application and framework
design questions. For a discussion of design issues affecting enterprise
objects, see the chapters “Designing Enterprise Objects” on page 65
and “Advanced Enterprise Object Modeling” on page 105.

The topics covered in this chapter are as follows:

• “How Can I Improve Performance?” (page 223)

• “How Do I Generate Primary Keys?” (page 229)

• “How Do I Use My Database Server’s Integrity-Checking
Features?” (page 238)

• “How Do I Invoke a Stored Procedure?” (page 242)

• “How Do I Order Database Operations?” (page 248)

• “How Are Enterprise Objects Cleaned Up?” (page 250)

• “Should I Make Foreign Key Attributes Class Properties?”
(page 254)

• “How Do I Share Models Across Applications?” (page 255)

How Can I Improve Performance?

In an Enterprise Objects Framework application, every trip to the
database and every object fetched is a potential drag on performance.
Consequently, a large part of designing for performance entails
answering these questions:

• How can I minimize my application’s trips to the database?

• When I do have to make trips to the database, how can I best take
advantage of them?

• How can I avoid fetching objects I’ll never need, while still
maintaining access to objects I might need?
223

Chapter 8 Answers to Common Design Questions
Enterprise Objects Framework has several built-in features for
intelligently managing your application’s interactions with the database.
It also has hooks for fine-tuning this behavior to get the best performance
for your application.

Controlling the Number of Objects Fetched
If you define a fetch specification in your model, you can set a fetch limit
for it in EOModeler. You can also define what should happen if the fetch
limit is reached. For more information, see Enterprise Objects Framework
Tools and Techniques.

If you’re not using a predefined fetch specification, you set the fetch limit
programmatically using EOFetchSpecification’s setFetchLimit method
(setFetchLimit: in Objective-C) passing an integer value indicating the
maximum number of objects to fetch (an unsigned integer value in
Objective-C). The default value is zero, indicating no fetch limit.

The EODatabaseContext will either stop fetching objects when this
limit is reached or ask the EOEditingContext’s message handler to ask
the user whether it should continue fetching. The default behavior
simply stops fetching, so if you want to prompt the user, send
setPromptsAfterFetchLimit (setPromptsAfterFetchLimit: in Objective-C)
to the fetch specification with true (YES in Objective-C) as the argument.
For more information on managing fetch limits, see the
EOFetchSpecification class description and the EOEditingContext
EOMessageHandlers interface description in the Enterprise Objects
Framework Reference.

Faulting
When an EODatabaseContext fetches an object, it uses the relationships
defined in the model to fetch related objects. For example, if you fetch
an employee object, you can access its manager directly; you don’t have
to get the manager’s employee ID from the object you just fetched and
fetch the manager yourself.

However, EODatabaseContext doesn’t fetch related objects
immediately, since they may never be accessed and fetching can be
expensive. Instead the destination objects created are stand-ins, called
faults, that fetch their data the first time they’re accessed.
224

How Can I Improve Performance?
When a fault is accessed (sent a message for which it must get its data to
respond), it triggers its EODatabaseContext to fetch its data and finish
initializing it. This works well for limited numbers of objects. However,
suppose you fetch multiple employees and then want to retrieve each
employee’s department. You’d have to loop over all of the employees and
fetch each employee’s department fault individually, resulting in
numerous trips to the database.

To avoid these unnecessarily trips to the database, you can fine-tune
faulting behavior for additional performance gains by using two different
mechanisms: batch faulting, and prefetching relationships.

Batch Faulting
When you access a fault, its data is fetched from the database. However,
triggering one fault has no effect on other faults—it just fetches the object
or array of objects for the one fault. You can take advantage of this
expensive round trip to the database server by batching faults together.
When you do this, triggering one fault (such as an employee’s
department) has the effect of fetching multiple faults. This reduces the
number of fetches—the next time you access an employee’s department,
it’s less likely to require a trip to the database.

You can configure batch faulting in a model with EOModeler. With this
approach, you specify the number of faults for the same entity or
relationship that should be triggered along with the first fault. For more
information on setting batch faulting in an EOModel, see Enterprise
Objects Framework Tools and Techniques.

To actually control which faults are triggered along with the first one,
you can use the EODatabaseContext method batchFetchRelationship
(batchFetchRelationship:forSourceObjects:editingContext: in
Objective-C). For example, given an array of Employee objects,
this method can fetch all of their departments with one round trip to
the server, rather than asking the server for each of the employee’s
departments individually. For more information, see the
EOFetchSpecification class description in the Enterprise Objects
Framework Reference.
225

Chapter 8 Answers to Common Design Questions
Prefetching Relationships
Sometimes it’s more efficient to specify prefetching relationships so that
related objects are fetched at the same time. For example, when fetching
employees, you can define a prefetching relationship between an
employee and a department to force these objects to be fetched as well,
as opposed to having faults created for them. Although prefetching
increases the initial fetch cost, it can improve overall performance by
reducing the number of round trips made to the database server.

If you define your fetch specification in a model, you can configure its
prefetching behavior in EOModeler. For more information, see Enterprise
Objects Framework Tools and Techniques.

Alternatively, you can programmatically set prefetching relationships
by sending setPrefetchingRelationshipKeyPaths
(setPrefetchingRelationshipKeyPaths: in Objective-C) to an
EOFetchSpecification object and passing an array of relationship key
paths whose destinations should be fetched along with the objects
specified. For more information, see the EOFetchSpecification class
description in the Enterprise Objects Framework Reference.

Caching an Entity’s Objects
You can cache an entity’s objects in memory for quick access. Caching an
entity’s objects allows Enterprise Objects Framework to evaluate queries
in memory, thereby avoiding round trips to the database. This is most
useful for read-only entities, where there is no danger of the cached data
getting out of sync with database data. This technique should only be
used with small tables, since it fetches the entire table into memory.

To set up object caching on an entity, you can use the Advanced Entity
Inspector in EOModeler or you can do it programmatically using the
EOEntity method setCachesObjects (setCachesObjects: in Objective-C).
For more information on configuring object caching in EOModeler, see
Enterprise Objects Framework Tools and Techniques, and for more information
on object caching, see the EOEntity class specification in the Enterprise
Objects Framework Reference.
226

How Can I Improve Performance?
Creating an EOModel for Optimal Performance
The way you design your EOModel has a direct effect on how your
application interacts with the database, and consequently, on
performance. There are a few general guidelines you should observe:

• Avoid flattening objects whenever possible.
• Use inheritance wisely.
• Don’t set BLOB attributes to be used for locking.

Each is discussed in the following sections.

Avoid Flattening Attributes
Flattening attributes has two major drawbacks:

1. The values of flattened attributes can get out of sync with the
object graph (which represents the most current view of data in
your application). This limitation doesn’t apply if you’re flattening
a one-to-one relationship in order to map a class across multiple
tables.

2. Fetching objects that span multiple database tables requires
database joins, which are expensive. If you find yourself designing
an application that requires flattened attributes, you should
consider whether there’s a more efficient approach.

Instead of flattening attributes, you can directly traverse relationships in
the object graph. For example, the following statements access the value
of a departmentName property belonging to the Department object to
which Employee has a relationship:

In Java:

// Get the name of the Employee’s department
employee.department().departmentName();

// Set the name of the employee’s department
employee.department().setDepartmentName(newName);
227

Chapter 8 Answers to Common Design Questions
In Objective-C:

// Get the name of the Employee’s department
[[employee department] departmentName];

// Set the name of the employee’s department
[[employee department] setDepartmentName:newName];

For more discussion of this subject, see the chapter “Designing
Enterprise Objects” on page 65.

Use Inheritance Wisely
As discussed in the chapter “Designing Enterprise Objects,” the way that
you map an object hierarchy onto a relational database in your EOModel
can have a significant effect on performance. You should observe the
following guidelines:

• Avoid mapping a deep object hierarchy onto a relational database
since it will probably result in multiple fetches and joins.

• Try to avoid using vertical inheritance mapping, since it’s the least
efficient of the possible approaches.

Don’t Use BLOB Attributes For Locking
In EOModeler the Used For Locking setting indicates whether an
attribute should be checked for changes before an update is allowed. This
setting applies when you’re using Enterprise Object Framework’s default
update strategy, optimistic locking. Under optimistic locking, the state of
a row is saved as a snapshot when you fetch it from the database. When you
perform an update, the snapshot is checked against the row to make sure
the row hasn’t changed. If you set Used For Locking for an attribute
whose data is a BLOB type, it can increase the cost of updating the row
containing the BLOB.

Ideally, you should store BLOBs in their own table away from more
commonly accessed attributes.

Updating the User Interface Display
When objects change in the EOEditingContext for an EODisplayGroup,
the EODisplayGroup by default refreshes all of its EOAssociations, even
228

How Do I Generate Primary Keys?
if none of the EODisplayGroup’s objects is in the EOEditingContext
notification change list.

This “universal” refresh is sometimes necessary because EOAssociations
may display derived values (through key paths or business methods) that
depend on objects other than the ones being displayed. However, if you
know that your user interface doesn’t display derived data, you can
specify that an EODisplayGroup’s EOAssociation objects be refreshed
only if the EODisplayGroup objects change.

There are different ways to accomplish this:

• In Interface Builder, display the Attributes view of the
EODisplayGroup Inspector and uncheck “Refresh All”.

• In your code, include a statement such as the following:

In Java:

myDisplayGroup.setUsesOptimisticRefresh(true);

In Objective-C:

[myDisplayGroup setUsesOptimisticRefresh:YES];

This is equivalent to unchecking “Refresh All” in Interface
Builder for myDisplayGroup .

• Implement the EODisplayGroup delegate method
displayGroupShouldRedisplay
(displayGroup:shouldRedisplayForChangesInEditingContext: in
Objective-C) to control when redisplay occurs.

How Do I Generate Primary Keys?

Enterprise Objects Framework requires you to specify a primary key for
each entity in a model. In applications that create new enterprise objects
to insert into a database, unique values must be generated and assigned
to an object’s primary key. The Framework typically does this for you, but
you can override or customize its default behavior.
229

Chapter 8 Answers to Common Design Questions
Note: Enterprise Objects Framework doesn’t support modifiable
primary key values—you shouldn’t design your application so that
users can change a primary key’s value. If you really need this behavior,
you have to implement it by deleting an affected object and reinserting
it with a new primary key.

Defining a Primary Key
When designing a database, keep the following tips in mind for defining
primary keys:

• Don’t use floating point values such as doubles and dates because
they aren’t precise in equality tests.

• Use integer or 12 byte binary primary keys when you want
Enterprise Objects Framework to generate primary key values
automatically. For more information on the format of 12 byte
primary keys, see the constructor description (or the method
description for assignGloballyUniqueBytes: in Objective-C) in the
EOTemporaryGlobalID class specification in the Enterprise Objects
Framework Reference.

• Try to avoid using compound keys. A compound key incurs
additional overhead in not only its entity but also in related entities:
the destination entities of all to-one relationships must contain an
attribute for each primary key attribute in the source. In addition,
you can’t use Enterprise Objects Framework’s automatic primary
key generation mechanism for compound primary keys.

• You can improve the efficiency of enterprise object inheritance
support by encoding the class of an object in its primary key. When
the class of an object is encoded in its key and you implement the
EOModelGroup delegate method to tell the Framework the
subentity and subclass for a key, Enterprise Objects Framework
creates a more efficient fault for the object than it would otherwise.
Try to encode the class of an object in a large integer or binary key
instead of using a compound key. For more information, see the
section “Delegation Hooks for Optimizing Inheritance” on
page 134 in the “Advanced Enterprise Object Modeling” chapter.
230

How Do I Generate Primary Keys?
Generating Primary Key Values
There are four ways to provide primary key values for enterprise objects:

1. An enterprise object can provide its own primary key value. With this
approach, the primary key must be a class property of the object.
If the primary key value of an object is null (nil in Objective-C)
or zero when the Framework attempts to insert it, the Framework
falls back on one of the other mechanisms to provide the value.

2. An EODatabaseContext’s delegate provides a primary key value.
If the EODatabaseContext that’s inserting an enterprise
object has a delegate, and if the delegate has a method called
databaseContextNewPrimaryKey
(databaseContext:newPrimaryKeyForObject:entity: in Objective-C)
that returns a non-null (non-nil) value, the Framework uses the
returned object as the primary key value.

3. A database stored procedure provides a primary key value. If an
enterprise object’s entity has a stored procedure assigned to the
NextPrimaryKeyProcedureOperation, the Framework invokes
the stored procedure and uses the result as the primary key value.

4. Your adaptor provides a primary key value using a database-specific
mechanism. Each adaptor provides a database-specific
implementation of the method primaryKeyForNewRowWithEntity
(primaryKeyForNewRowWithEntity: in Objective-C) that provides
unique values for primary key attributes.

This is the technique used when your primary keys are integers.
However, as described in the preceding section, when you want
Enterprise Objects Framework to generate primary keys, you can
also use 12 byte NSDatas. The difference is that integer primary
keys are fetched from the database, whereas NSData keys are
generated on the client (see the EOTemporaryGlobalID class
specification in the Enterprise Objects Framework Reference for more
information). Consequently, using 12 byte NSDatas is faster, but
integer primary keys have the advantage of being more readable.

If the Framework can’t assign a primary key using one of the mechanisms
above, it throws an exception.
231

Chapter 8 Answers to Common Design Questions
The following sections provide more information on when and how to use
each mechanism.

When the Enterprise Object Provides the Key
An enterprise object generally provides its own primary key value when
the primary key is meaningful to users—a social security number, account
number, or part number, for example. In some cases, the user provides
the primary key value by entering it in the user interface. In other cases,
the enterprise object generates its own unique primary key value. For
example, a Part object’s primary key could encode the part’s type, the
plant from which it came, and the batch in which it was made. Although
generated, part numbers may still be meaningful to users if they use them
to identify parts.

To specify that an enterprise object provides its own key, you must set
the primary key attributes as class properties in the object’s entity. Your
enterprise object class should provide an instance variable or accessor
methods for each of the primary key attributes. If you want to provide the
primary key value for a newly created enterprise object, be sure to assign
it before the object is saved.

Note: In the case of Number objects (NSNumbers in Objective-C),
don’t set the value to zero unless you intend to have the primary key
generated. See the section “Why is EOF Generating Primary Key
Values for Number Objects Set to Zero?” on page 237 below for
details.)

If an enterprise object generates its own primary key value
programmatically, you must generate and assign it in an appropriate
method. You could, for example, provide a primary key value when
the object is first instantiated by implementing the method
awakeFromInsertion (awakeFromInsertionInEditingContext:
in Objective-C).

On the other hand, if your application’s user interface provides a way for
the user to enter primary key values, you don’t need to handle them any
differently than you handle the object’s other properties. For example,
if an application uses social security numbers as the primary keys for
employees, it must provide a way for users to enter them. The interface
232

How Do I Generate Primary Keys?
layer of the Framework takes care of assigning the user-provided value to
the object.

The disadvantage of letting users enter primary key values is that there’s
a chance for data-entry error and the possibility that the object’s primary
key will need to be modified later. Since Enterprise Objects Framework
doesn’t support modifiable primary keys, you have to delete an object and
reinsert it with a new primary key value to change its primary key. It’s
generally better to define a “meaningless” primary key to use instead.

When the EODatabaseContext Delegate
Provides the Key
An EODatabaseContext’s delegate is given an opportunity to provide a
primary key value for enterprise objects that don’t already have one. This
is the most commonly used mechanism in applications that don’t use the
adaptor’s database-specific primary key generation mechanism. You
might use the delegate to provide primary key values when you want to
avoid making a trip to the database. For example, you might implement
this method to generate globally unique identifiers based on an
IP address and a time stamp.

To allow your EODatabaseContext’s delegate to provide primary keys,
implement the method databaseContextNewPrimaryKey
(databaseContext:newPrimaryKeyForObject:entity: in Objective-C).
An EODatabaseContext sends this method to its delegate when a
newly inserted enterprise object doesn’t have a primary key value.
If the delegate is not implemented or returns null (nil), the
EODatabaseContext gets a primary key by invoking a stored
procedure or using its adaptor’s database-specific mechanism.

When a Database Stored Procedure Provides the Key
You typically use a stored procedure to provide primary key values when
you need to override the adaptor’s database-specific mechanism but still
need to make a trip to the database to generate values.

To use a stored procedure to provide primary key values, you must define
the stored procedure in your model. Stored procedures are read from the
database when you create a new model and included in the model’s
.eomodeld file. You can also add stored procedures in EOModeler using
the Stored Procedure view of the Model Editor.
233

Chapter 8 Answers to Common Design Questions
After defining the stored procedure, you assign it to an entity. You can set
it in EOModeler: In the Stored Procedure Inspector, type the name of the
stored procedure in the Get PK field. Alternatively, you can set it
programmatically using EOEntity’s setStoredProcedure method
(setStoredProcedure:forOperation: in Objective-C). For more information
on defining stored procedures and assigning them to entities, see the
section “How Do I Invoke a Stored Procedure?” on page 242.

When the Adaptor Provides the Key
Each adaptor provides a database-specific mechanism for generating
primary keys. Unless you specify one of the other four mechanisms,
Enterprise Objects Framework automatically uses the adaptor’s
mechanism.

Each adaptor provides an implementation of the method
primaryKeyForNewRowWithEntity (primaryKeyForNewRowWithEntity:
in Objective-C). When invoked, this method returns a unique primary
key value. For example, the Oracle adaptor uses Oracle sequences to
generate unique values.

To use the adaptor’s database-specific mechanism, you must be sure that
your database accommodates the adaptor’s scheme. The primary keys of
the affected tables must be simple (that is, they can’t be compound
primary keys), and they must be number types.

To modify your database so that it supports the adaptor’s mechanism for
generating primary keys:

1. In EOModeler’s Model Editor, select the entities for which you
want the adaptor to generate primary key values.

2. Choose Property m Generate SQL.

3. In the SQL Generation panel that appears, check the “Create
Primary Key Support” box as well as any of the others that you
might need.

The following sections describe the support added to your database
for each of Enterprise Objects Framework’s adaptors.
234

How Do I Generate Primary Keys?
Informix and Sybase
The Informix and Sybase adaptor use the same approach to generating
primary key values. Both adaptors use a table named eo_sequence_table
to keep track of the next available primary key value for a given table.
The table contains a row for each table for which the adaptor provides
primary key values.

The statements used to create the eo_sequence_tables are:

The adaptors use a stored procedure called eo_pk_for_table to access and
maintain the primary key counters in eo_sequence_table. The stored
procedures are defined as follows:

The stored procedures increment the counter in the eo_sequence_table
row for the specified table, select the counter value, and return it. The
Informix and Sybase adaptor’s primaryKeyForNewRowWithEntity methods
execute the eo_pk_for_table stored procedure and return the stored
procedure’s return value.

Informix Sybase

create table eo_sequence_table
(table_name varchar(32, 0),
counter integer)

create table eo_sequence_table
(table_name varchar(32),
counter int null)

Informix Sybase

create procedure
eo_pk_for_table (tname varchar(32))
returning int;
define cntr int;

update EO_SEQUENCE_TABLE
set COUNTER = COUNTER + 1
where TABLE_NAME = tname;

select COUNTER into cntr
from EO_SEQUENCE_TABLE
where TABLE_NAME = tname;

return cntr;
end procedure;

create procedure
eo_pk_for_table @tname varchar(32)
as
begin
declare @max int

update eo_sequence_table
set counter = counter + 1
where table_name = @tname

select counter
from eo_sequence_table
where table_name = @tname

end
235

Chapter 8 Answers to Common Design Questions
ODBC
The approach taken by the ODBC adaptor is very similar to that of the
Informix and Sybase adaptors. The ODBC adaptor uses a table named
EO_PK_TABLE to keep track of the next available primary key value for
a table, but the ODBC adaptor can create this table on demand. (The
Informix and Sybase adaptors do not create the table and corresponding
stored procedures. Rather, you create them ahead of time using the SQL
Generation panel in EOModeler.)

The ODBC adaptor’s primaryKeyForNewRowWithEntity method attempts
to select a value from the EO_PK_TABLE for the new row’s table. If the
attempt fails because the table doesn’t exist, the adaptor creates the table
using the following SQL statement:

CREATE TABLE EO_PK_TABLE (

NAME TEXT_TYPE(40),

PK NUMBER_TYPE

)

where TEXT_TYPE is the external (database) type for characters and
NUMBER_TYPE is the external type for the table’s primary key
attribute. The ODBC adaptor sets the PK value for each row to the
corresponding table’s maximum primary key value plus one. After
determining a primary key value for the new row, the ODBC adaptor
updates the counter in the corresponding row in EO_PK_TABLE.

Oracle
The Oracle adaptor uses sequence objects to provide primary key values.
It creates a sequence using the following SQL statement:

create sequence table _SEQ

where table is the name of a table for which the adaptor provides primary
key values. The adaptor sets the sequence start value to the
corresponding table’s maximum primary key value plus one.

Why Can’t I Use Identity Columns?
Some databases provide mechanisms that automatically generate primary
key values. For example, Sybase allows you to specify identity columns
that automatically replace nulls with unique values. In databases that
don’t provide identity columns, you can define triggers to produce the
236

How Do I Generate Primary Keys?
same result. These mechanisms are very useful when users interact
directly with the database using SQL. However, they are difficult to use
in applications that mediate between users and a database. You shouldn’t
use them in applications built with Enterprise Objects Framework.

Suppose that a database application allowed you to insert a row without
providing a primary key value. An identity column or database trigger
could generate an identifying value for the row, but the corresponding
application object wouldn’t have the value. The application could
attempt to fetch the object using the values provided by the user, but a
query that doesn’t specify a primary key value might return more than
one row. As a result, the application can’t guarantee that it will be able to
associate the current object with a row in the database. For this reason,
Enterprise Objects Framework requires that you assign a primary key
value to an object before it’s inserted in the database.

Why is EOF Generating Primary Key Values for
Number Objects Set to Zero?
The EODatabaseContext assumes that an Number object (NSNumber
in Objective-C) with a single attribute primary key value set to zero is a
newly created instance, and therefore, will attempt to generate the
primary key. This behavior allows you to use scalar data types (such as int)
as an object’s primary key, and still rely on automatic primary key
generation.

This can cause problems if you have an existing database containing rows
that use zero as the primary key value. The EODatabaseContext will
incorrectly assume that an object created from that row needs a new
primary key. This behavior may result in invalid foreign key references
in other tables of your database.

To alter this behavior, assign a delegate to the EODatabaseContext
object and implement the databaseContextNewPrimaryKey
delegate method (databaseContext:newPrimaryKeyForObject:entity:
in Objective-C) to return a Number object of value zero if the primary
key should remain zero (an NSNumber in Objective-C), otherwise return
null (nil). Returning null will tell EOF to find another way to generate the
primary key value as described above.
237

Chapter 8 Answers to Common Design Questions
Summary
The following table summarizes the primary key generation options you
have to choose from.

How Do I Use My Database Server’s
Integrity-Checking Features?

Most database systems offer features to help you maintain the integrity
of your data. You can assign default values to columns, define rules that
specify the format or allowable range of a column’s values, and define
constraints or triggers to enforce relational integrity rules. Enterprise
Objects Framework has its own brand of solutions for the same issues.
You have to decide whether to use the database system’s solution, the
Framework’s solution, or a combination of the two. The decision involves
answering the following questions:

• Can I avoid using the database’s integrity-checking features?

• Is it possible that non-Enterprise Objects Framework tools and
applications will access the database?

Mechanism Primary Use

Object provides its own value When the primary key value is meaningful
to users and is displayed in the
application’s user interface.

EODatabaseContext delegate method When you don’t want to use the adaptor’s
mechanism.

Stored procedure When you want to use your own stored
procedure to provide primary key values.

Adaptor’s mechanism When the primary key is a simple
(not compound), numeric value that
is not meaningful to users.
238

How Do I Use My Database Server’s Integrity-Checking Features?
• Can I use the database system’s feature without interfering with
the way Enterprise Objects Framework works?

• How can I use both the database system’s and Enterprise Objects
Framework’s solutions?

When you implement integrity checking in your Enterprise Objects
Framework applications, you can reject erroneous data or illegal
operations as soon as a user performs an invalid action. Enterprise
Objects Framework relies on application-side integrity checking to
provide feedback to users and to handle errors. Without it, it is much
more difficult for you to develop the user interfaces for your Enterprise
Objects Framework applications.

Because client-side business logic is required to create a highly
interactive user interface and because duplication of business logic
is inefficient and error-prone, you should try to avoid using database
integrity-checking features. Sometimes, however, it’s unavoidable.
You usually use database integrity checking when users can access
a database in many ways (using Enterprise Objects Framework
applications, non-Enterprise Objects Framework applications, and
interactive SQL sessions, for example). In this case, you may have to
use the features of your database server to assure your data’s integrity.
As a result, you may choose to implement integrity checking in both your
Enterprise Objects Framework applications and in the database.

The following sections discuss guidelines for using the
integrity-checking features of your database in concert with an
Enterprise Objects Framework application.

Defaults
Many databases allow you to specify a default value for a column.
When a NULL value is inserted (or updated) in a column with a default,
the database substitutes the default value for the NULL.

If you define defaults in your database, you should specify the defaults in
your Enterprise Objects Framework application as well. Generally, you
assign default values in your enterprise object’s awakeFromInsertion
method (awakeFromInsertionInEditingContext: in Objective-C).
239

Chapter 8 Answers to Common Design Questions
For example:

In Java:

public void awakeFromInsertion(EOEditingContext ec)
{

super.awakeFromInsertion(ec);
// Assign current date to memberSince
if (memberSince == null)

memberSince = new NSGregorianDate();
}

In Objective-C:

- (void)
awakeFromInsertionInEditingContext:

(EOEditingContext *)ec
{

[super awakeFromInsertionInEditingContext:ec];
// Assign current date to memberSince
if (!memberSince)

memberSince = [[NSCalendarDate date] retain];
}

An alternative is to fetch newly inserted objects immediately after you
save them to the database. If you don’t assign the default values before
you save an object and you don’t refetch the object from the database
after you save, the Framework’s object snapshots will not be in sync with
the contents of the database. As a result, the Framework may prevent
subsequent updates to the object.

Rules That Validate Values
Many databases allow you to define a rule (or constraint) for a column. A
rule can verify that a value is in a proper format or is within an acceptable
range. Whenever a value is inserted or updated, the database server
verifies that the value conforms to the rule before it performs the
operation.

You should implement data validation in your Enterprise Objects
Framework application whether or not you use database rules.
Depending on the nature of the validation, use a formatter or implement
an appropriate validate... method in your enterprise object class. For more
information, see the chapter “Designing Enterprise Objects” on page 65.
240

How Do I Use My Database Server’s Integrity-Checking Features?
Constraints for Enforcing Relational Integrity Rules
Many databases provide mechanisms to enforce relational integrity rules.
For example, you can define a constraint (or trigger) that prevents the
deletion of a Department that still contains Employees. Enterprise
Objects Framework also provides mechanisms for enforcing these types
of rules. For example, you can specify delete rules for relationships in
EOModeler.

If you use database triggers and constraints, you will have to duplicate the
logic in your Enterprise Objects Framework application. In some cases,
the duplication won’t hurt anything, but in other cases you have to
provide special handling to avoid run-time errors.

For example, suppose you have a constraint specifying that you can’t
delete a department if it still has employees. In addition, you specify
the Deny delete rule on the Department entity’s employees relationship.
When a user attempts to delete a department, Enterprise Objects
Framework verifies that the corresponding Department object has
no employees. If the department has one or more employees, the
Framework doesn’t allow the delete.

Further suppose that a user moves all the employees from one
department to another, deletes the empty department, then saves all
changes. Enterprise Objects Framework analyzes the object graph to
determine what operations have taken place. It orders the operations
by analyzing the relationships and identifying “master” and “detail”
entities. In this example, the Department object, the master, would
not be deleted until all the employees are updated to reflect their new
department. In most cases, Enterprise Objects Framework just does the
“right thing.” However, if you discover a sequencing problem with your
application, you can customize the order in which database operations are
performed. For a complete description of the Framework’s default
ordering algorithm and how to programmatically reorder operations,
see the section “How Do I Order Database Operations?” on page 248.
241

Chapter 8 Answers to Common Design Questions
How Do I Invoke a Stored Procedure?

To invoke a stored procedure from your Enterprise Objects Framework
application, you must define the stored procedure in a model and decide
how to invoke it.

If your stored procedure is defined in the database at the time you create
your model, you don’t have to do anything to define it. When you create
a new model with EOModeler, the application reads stored procedure
definitions from the database’s data dictionary and stores them in the
model’s .eomodeld file. However, you can also add a stored procedure
definition to an existing model. For more information, see the book
Enterprise Objects Framework Tools and Techniques.

Depending on what a stored procedure does, you can either invoke it
explicitly or specify that the Framework invoke it for common database
operations.

Invoking a Stored Procedure Automatically
You can define stored procedures to perform the following operations:

By associating a stored procedure with an entity’s operation, the
Framework invokes it automatically when the operation occurs.
For example, if you want to use a stored procedure to insert new
Customer objects:

1. Define the stored procedure in the database.

2. Define the stored procedure in the model.

Operation Description

FetchAllProcedureOperation Fetches all the objects for an entity.

FetchWithPrimaryKeyProcedureOperation Fetches an object by its primary key.

InsertProcedureOperation Inserts a new object.

DeleteProcedureOperation Deletes an object.

NextPrimaryKeyProcedureOperation Generates a new primary key value.
242

How Do I Invoke a Stored Procedure?
3. Associate the stored procedure with the Customer entity’s insert
operation.

You can associate a stored procedure with an entity using EOModeler as
described in the book Enterprise Objects Framework Tools and Techniques.
Or you can do it programmatically using EOEntity’s setStoredProcedure
method (setStoredProcedure:forOperation: in Objective-C). For more
information on the operations and on setting them programmatically,
see the EOEntity class specification in the Enterprise Objects
Framework Reference.

Requirements for Framework-Invoked Stored
Procedures
When Enterprise Objects Framework invokes a stored procedure
for an operation, the procedure must behave in an expected way.
The Framework specifies what a stored procedure’s arguments, results,
and return values should be. The following sections summarize the
requirements for each operation.

FetchAllProcedureOperation
The FetchAllProcedureOperation (EOFetchAllProcedureOperation
in Objective-C) fetches all the objects for a particular entity. A stored
procedure for this operation should have no arguments and return a result
set (or in the case of Oracle, a REFCURSOR argument) for all the objects
in the corresponding entity.

The rows in the result set must contain values for all the columns
Enterprise Objects Framework would fetch if it were not using the stored
procedure, and it must return them in the same order. In other words, the
stored procedure should return values for primary keys, foreign keys used
in class property joins, class properties, and attributes used for locking
(generally, values for all the entity’s attributes). Also, the stored procedure
should return the values in alphabetical order based on the names of their
corresponding EOAttribute objects. For example, a Studio entity has the
attributes studioId , name , and budget . A stored procedure that fetches all
the Studio objects should return the value for a studio’s budget value,
then the studio’s name, and then its studioId.

If an FetchAllProcedureOperation stored procedure has a return value,
Enterprise Objects Framework ignores it.
243

Chapter 8 Answers to Common Design Questions
FetchWithPrimaryKeyProcedureOperation
The FetchWithPrimaryKeyProcedureOperation
(EOFetchWithPrimaryKeyProcedureOperation in Objective-C) fetches
a single enterprise object by its primary key value. A stored procedure for
this operation should take an “in” argument for each of the entity’s
primary key attributes. The argument names must match the names of
the primary key attributes. For example, a Studio entity has one primary
key attribute named “studioId”. As defined in a model, the stored
procedure’s argument must also be named “studioId”.

An FetchWithPrimaryKeyProcedureOperation stored procedure should
return a result set (or in the case of Oracle, a REFCURSOR argument)
containing the matching row. The row must be in the same form as those
returned by an FetchAllProcedureOperation stored procedure.

If an FetchWithPrimaryKeyProcedureOperation stored procedure has
a return value, Enterprise Objects Framework ignores it.

InsertProcedureOperation
The InsertProcedureOperation (EOInsertProcedureOperation in
Objective-C) inserts a new enterprise object. A stored procedure for this
operation should take “in” arguments for each of the corresponding
entity’s attributes. The argument names must match the names of the
corresponding EOAttribute objects.

An InsertProcedureOperation stored procedure should not return a result
set. Also, if an InsertProcedureOperation stored procedure has a return
value, Enterprise Objects Framework ignores it.

DeleteProcedureOperation
The DeleteProcedureOperation (EODeleteProcedureOperation in
Objective-C) deletes a single enterprise object by its primary key value.
A stored procedure for this operation should take an “in” argument
for each of the entity’s primary key attributes. The argument names
must match the names of the primary key attributes as in
FetchWithPrimaryKeyProcedureOperation stored procedures.

An DeleteProcedureOperation stored procedure should not return a
result set. Also, if an DeleteProcedureOperation stored procedure has
a return value, Enterprise Objects Framework ignores it.
244

How Do I Invoke a Stored Procedure?
NextPrimaryKeyProcedureOperation
The NextPrimaryKeyProcedureOperation
(EONextPrimaryKeyProcedureOperation in Objective-C)
generates a unique primary key value for a new enterprise object.
A stored procedure for this operation should take an “out” argument
for each of the entity’s primary key attributes. The argument names
must match the names of the primary key attributes as in
FetchWithPrimaryKeyProcedureOperation stored procedures.

An NextPrimaryKeyProcedureOperation stored procedure should not
return a result set. Also, if an NextPrimaryKeyProcedureOperation stored
procedure has a return value, Enterprise Objects Framework ignores it.

Invoking a Stored Procedure Explicitly
Some stored procedures can’t be associated with a specific database
operation that Enterprise Objects Framework invokes. For example,
if you’ve defined a stored procedure to return the sum of revenues for
all the Movie objects, you’ll have to invoke it explicitly. To invoke a
stored procedure explicitly, you use an EOAdaptorChannel object.
The following code excerpt shows how to do it:

In Java:

EOAdaptorChannel adChannel; // Assume this exists.
EOStoredProcedure sumOfRevenue;
NSDictionary results;
EOModelGroup defaultGroup = EOModelGroup.defaultGroup();

sumOfRevenue = defaultGroup.storedProcedureNamed(
"sumOfRevenue");

adChannel.executeStoredProcedure(sumOfRevenue, null);
results = adChannel.

returnValuesForLastStoredProcedureInvocation();
245

Chapter 8 Answers to Common Design Questions
In Objective-C:

EOAdaptorChannel *adChannel; // Assume this exists.
EOStoredProcedure *sumOfRevenue;
NSDictionary *results;

sumOfRevenue = [[EOModelGroup defaultGroup]
storedProcedureNamed:@"sumOfRevenue"];

[adChannel executeStoredProcedure:sumOfRevenue
withValues:nil];
results =

[adChannel
returnValuesForLastStoredProcedureInvocation];

The method returnValuesForLastStoredProcedureInvocation returns
stored procedure parameter and return values. The dictionary returned
by this method (results in this example) has entries whose keys are
the names of the stored procedure’s out and in-out arguments.
The dictionary may also contain an entry with the key “returnValue”
whose value is the return value of a stored procedure (if it has one).

Tip: If you’re using Sybase, the return values dictionary always contains
a “SybaseStoredProcedureReturnStatus” key whose value is the return
status of the stored procedure. You don’t need to declare an output
parameter for this.

Tip: If you’re using Oracle, you can define a stored procedure
to represent a function. Add an argument named
“returnValue” and use the EOAdaptorChannel method
returnValuesForLastStoredProcedureInvocation
to get the function’s result.

If you want to invoke a stored procedure that returns rows, you
use fetchRow (fetchRowWithZone: in Objective-C) as you would
if you were fetching the results of a selectAttributes message
(selectAttributes:fetchSpecification:lock:entity: in Objective-C).
For example, the following code excerpts fetch Movie objects
using the fetchMovies stored procedure:
246

How Do I Invoke a Stored Procedure?
In Java:

EOAdaptorChannel adChannel; // Assume this exists.
EOStoredProcedure fetchMovies;
NSDictionary row;
EOModelGroup defaultGroup = EOModelGroup.defaultGroup();

fetchMovies =
defaultGroup.storedProcedureNamed("fetchMovies");
adChannel.executeStoredProcedure(fetchMovies, null);

while (adChannel.isFetchInProgress()) {
while (row = adChannel.fetchRow()) {

// Process theRow.
}

}

In Objective-C:

EOAdaptorChannel *adChannel; // Assume this exists.
EOStoredProcedure *fetchMovies;
NSDictionary *row;

fetchMovies = [[EOModelGroup defaultGroup]
storedProcedureNamed:@"fetchMovies"];

[adChannel executeStoredProcedure:fetchMovies
withValues:nil];

while ([adChannel isFetchInProgress]) {
while (row = [adChannel fetchRowWithZone:nil]) {

/* Process theRow. */
}

}

Neither of the previous examples uses stored procedures that have
arguments. If you want to invoke a stored procedure that does,
you provide the argument values to the stored procedure in the
executeStoredProcedure message (executeStoredProcedure:withValues:
in Objective-C). For example, the following code excerpts use a stored
procedure to insert a row into the database:
247

Chapter 8 Answers to Common Design Questions
In Java:

EOAdaptorChannel adChannel; // Assume this exists.
EOStoredProcedure insert;
NSDictionary row;
EOModelGroup defaultGroup = EOModelGroup.defaultGroup();

// Assume row contains the values for the row to insert

insert = defaultGroup.storedProcedureNamed("insert");
adChannel.executeStoredProcedure(insert, row);

In Objective-C:

EOAdaptorChannel *adChannel; // Assume this exists.
EOStoredProcedure *insert;
NSDictionary *row;

// Assume row contains the values for the row to insert.

insert = [[EOModelGroup defaultGroup]
storedProcedureNamed:@"insertTest"];

[adChannel executeStoredProcedure:insert
withValues:row];

Note: The EOAdaptorChannel must be open for this code to work.

For more information on invoking stored procedures explicitly, see the
EOAdaptorChannel class specification in the Enterprise Objects Framework
Reference.

How Do I Order Database Operations?

An Enterprise Objects Framework application typically queues up
changes to many enterprise objects before saving the changes to the
database. It is then the job of an EODatabaseContext to analyze an object
graph to determine what has changed, translate the changes to database
operations, and perform the operations using an EOAdaptorChannel.

Enterprise Objects Framework implements a default algorithm for
ordering the database operations that reduces the number of scenarios
in which you have to reorder adaptor operations programmatically.
Enterprise Objects Framework builds an entity ordering by identifying
“master” and “detail” entities as follows.
248

How Do I Order Database Operations?
• If an entity (Employee, for example) has a to-one relationship
to a second entity (Department) and the inverse relationship is
a to-many, then the second entity (Department) is considered
the master.

• If an entity has a to-one relationship to a second entity and the
inverse relationship is also to-one, then the framework checks
if one of the relationships propagates its primary key. The source
of the “propagatesPrimaryKey” relationship is considered to be the
master entity.

Before sending operations to the database, Enterprise Objects
Framework orders the operations based on these master definitions.
The operations will have the following order:

1. Lock operations (master entities before detail entities)

2. Inserts (master entities before detail entities)

3. Updates (master entities before detail entities)

4. Deletes (detail entities before master entities)

However, if your database uses sophisticated referential integrity, if it
uses triggers, or there are referential integrity constraints that are not
modeled in EORelationships, you may still need to reorder adaptor
operations programmatically.

For example, if Employees have to-one relationships to their managers,
then you will have to explicitly order the database operations such that
a manager is inserted before that manager’s direct reports are inserted.
Enterprise Objects Framework can’t catch this case because the
relationship is self-referential.

Another example of when you might reorder database operations is when
you want to use the same ordering algorithm that other non-Enterprise
Objects Framework applications are using to prevent deadlock
contention problems (such as can occur with Sybase servers). If a
Framework application takes locks in a different order than other
non-Framework applications, then you might encounter deadlock
problems.
249

Chapter 8 Answers to Common Design Questions
You can order database operations by implementing either or both of the
following EODatabaseContext delegate methods

In Java:

• databaseContextWillOrderAdaptorOperations
• databaseContextWillPerformAdaptorOperations

In Objective-C:

• databaseContext:willOrderAdaptorOperationsFromDatabaseOperations:
• databaseContext:willPerformAdaptorOperations:adaptorChannel:

The “willOrder” method provides the delegate with more information
from the object graph than the “willPerform” method. However,
“willPerform” can be more convenient. Its second argument is an array of
adaptor operations that are already prepared. The delegate only needs to
rearrange them. For more information on these delegate methods, see the
EODatabaseContext class specification in the Enterprise Objects
Framework Reference.

How Are Enterprise Objects Cleaned Up?

If you use an EODisplayGroup to fetch enterprise objects into your
application, you might wonder:

• Who “owns” the objects?
• How do they get cleaned up?
• How are their snapshots cleaned up?
• What happens if you have reference cycles?
250

How Are Enterprise Objects Cleaned Up?
In applications that fetch a lot of enterprise objects or are long-running,
these are important questions. How they’re answered depends on
what language you’re using. However, regardless of language,
you don’t typically have to worry about any of these issues.
With Java’s garbage collection, enterprise objects and their related
resources are automatically cleaned up when they are no longer in use.

In Objective-C, as long as you follow the object ownership conventions
defined in the Foundation framework, enterprise objects and their
related resources are similarly deallocated automatically. The following
sections provide more information on how this happens in Objective-C
Enterprise Objects Framework applications.

For more general information on this automatic object disposal
mechanism in Objective-C, see the introduction to the Foundation
Framework Reference.

Who Owns an Enterprise Object?
In design terms, one object might own another; but in the Foundation
Framework, no object really “owns” another. Rather, one or more objects
may “retain” another object. If one object retains another, it has a
responsibility to release it when it no longer needs the other object.
In Enterprise Objects Framework applications, an enterprise object is
retained by other enterprise objects that have a relationship to it. An
enterprise object is also retained by an EODisplayGroup object that
fetches and displays it.

How Does an Enterprise Object Get Deallocated?
In a Enterprise Objects Framework applications, an enterprise object is
retained by other enterprise objects that have a relationship to it and by
any EODisplayGroup objects that fetch and display it. Typically,
enterprise objects are deallocated automatically when they are no longer
referenced by other objects. You don’t ordinarily manage the deallocation
of enterprise objects explicitly.
251

Chapter 8 Answers to Common Design Questions
Accessor methods that manage relationships to one or more enterprise
objects also release objects when they no longer need to reference them.
For example, the following method releases an employee’s old manager
before assigning a new one:

- (void)setManager:(Employee *)aManager
{

[self willChange];
[manager autorelease];
manager = [aManager retain];

}

If an enterprise object class doesn’t implement accessor methods for a
relationship, the Framework automatically releases and retains the
destination objects. Similarly, an EODisplayGroup object releases its
enterprise objects immediately before it fetches a new set of objects or
immediately before it is deallocated itself. Unless you explicitly retain an
enterprise object, it is automatically deallocated when its display group
stops displaying it.

If you do explicitly retain an enterprise object (either by sending it a
retain message or by adding it to a collection), the enterprise object is not
deallocated until you release it (either by sending it a release message or,
if it’s in a collection, by releasing its collection).

Methods for getting enterprise objects without using an
EODisplayGroup don’t automatically retain objects. For example, the
objects returned from EODataSource’s fetchObjects method and
EOEditingContext’s objectsWithFetchSpecification: method are not
retained by any object. Unless you retain them, they will be deallocated
automatically.

How Are an Object’s Snapshots Deallocated?
Enterprise Objects Framework keeps two kinds of snapshots:

• Object snapshots that are maintained by EOEditingContexts
• Row snapshots that are maintained by EODatabaseContexts

An object snapshot is deallocated at the same time its enterprise object is
deallocated. A row snapshot, however, is only invalidated when its
EODatabaseContext is deallocated or when it receives an
invalidateAllObjects message or invalidateObjectWithGlobalID: message.
252

How Are Enterprise Objects Cleaned Up?
Multiple EOEditingContexts may use a single EODatabaseContext
object and its row snapshots. As a result, it isn’t practical to deallocate a
row snapshot when a corresponding enterprise object is deallocated. An
enterprise object in another EOEditingContext may still reference the
snapshot. To deallocate row snapshots explicitly, use one of the
invalidate... methods.

What Happens If You Have Retain Cycles?
A retain cycle occurs when two objects retain one another. They may
retain one another directly, or indirectly through a collection or another
object. Retain cycles occur quite commonly in Enterprise Objects
Framework applications. For example, if an Employee object has a
relationship to a Department object, the Department object probably has
a relationship to its employees as well. Normally an object retains the
objects to which it has a relationship, so the reciprocal relationships
between Employee and Department objects form a retain cycle.

Objects in a cycle stay in memory until the cycle is broken. If the cycle is
never broken, the objects stay in memory until the process exits. Too
many unbroken retain cycles degrade an application’s performance.

One strategy for handling retain cycles is to ensure that none are created.
If you don’t need reciprocal relationships, don’t create them. Reciprocal
relationships, however, are very useful. You are more likely to use one of
the following approaches for handling retain cycles.

invalidateObjectsWhenFreed
Retain cycles between objects can be broken automatically when their
EOEditingContext is deallocated. To break retain cycles automatically,
set the EOEditingContext’s invalidatesObjectsWhenFreed attribute to
YES, which is the default. This approach works well in multi-document
applications in which EOEditingContexts are deallocated when their
windows close.

invalidateAllObjects
In applications that aren’t multi-document, you can break cycles by
sending an invalidateAllObjects message to an EOEditingContext’s root
EOObjectStore. You typically invalidate enterprise objects after saving
changes to the database or after reverting.
253

Chapter 8 Answers to Common Design Questions
This method replaces all the associated enterprise objects with EOFault
objects, eliminating retain cycles in the process. It has the side-effect of
invalidating all the enterprise objects in a peer editing context as well.

Should I Make Foreign Key Attributes Class Properties?

You should not make foreign key attributes class properties. If you need
to access a foreign key value (because you want to display it in the user
interface, for example), you should access it through the corresponding
destination object.

Class properties that are foreign keys can become out of sync with their
corresponding destination objects. For example, assume that an
Employee class defines a relationship, department , to its department and
has a class property, departmentID , for the corresponding foreign key.
Assigning an employee to a new department doesn’t update the
departmentID property in the employee object until the enterprise object
is saved to the database. Thus, departmentID contains the primary key
value for the old department while the department relationship points to
the new department.

Instead of making the foreign key a class property of an enterprise object,
you should implement a method that gets the value from the destination
object. For example:

In Java:

public Object departmentID() {
NSDictionary primaryKey =

EOUtilities.primaryKeyForObject(
department.editingContext(),
department);

return primaryKey.objectForKey("departmentID");
}

In Objective-C:

- (id)departmentID
{

NSDictionary *primaryKey = [[department editingContext]
primaryKeyForObject:department];

return [primaryKey objectForKey:@"departmentID"];
}

254

How Do I Share Models Across Applications?
In the Java implementation, the EOUtilities static method
primaryKeyForObject returns the primary key dictionary for the
department object. In Objective-C, the method is primaryKeyForObject: ,
which is added to the EOEditingContext description through the
EOUtilities category in EOAccess.

How Do I Share Models Across Applications?

You should put shared models in a shared framework. Enterprise Objects
Framework automatically looks for models in the frameworks used by
your application (both at run-time, and at design time in EOModeler,
Interface Builder, and WebObjects Builder). Also put the enterprise
object classes that correspond to the model in the framework.

In order for Enterprise Objects Framework to find a model in a
framework, that framework must be built and installed. During design,
Enterprise Objects Framework looks at the model in the installed version
of the framework (not in the source version of the framework project).
This can result in Interface Builder and WebObjects Builder not seeing
the changes in the source version of the model since it’s looking at the
version in the installed framework, rather than at the one in your source
directory. You can tell Enterprise Objects Framework to look for models
in the source version of your framework projects by using the following
commands (executed in a shell):

defaults write NSGlobalDomain
EOProjectSourceSearchPath"($(HOME)/myProjectsDirectory1,
/myOtherProjectsDirectory)"

Then, when EOModeler, Interface Builder, or WebObjects Builder
look for models contained in one of your frameworks, it first searches
all project directories within $(HOME)/myProjectsDirectory1 and
/myOtherProjectsDirectory before searching for the built versions.
255

Entity-Relationship ModelingAppendix

A database server stores data in the structures that it defines:
A relational database uses tables to store data, an object-oriented
database uses objects, a file system uses files, and so on.
The Enterprise Objects Framework uses the terminology of
Entity-Relationship modeling (or E-R modeling) to describe a server’s
data structures in a way that allows those data structures to be mapped
to enterprise objects.

Entity-Relationship modeling isn’t unique to the Enterprise Objects
Framework; it’s a popular discipline with a set of rules and terms
that are documented in database literature. The Enterprise Objects
Framework uses a modified version of the traditional rules of E-R
modeling.

When your data store is a relational database, you can use the
EOModeler application to specify the mapping between the database
data and your enterprise objects. The model file you produce using
EOModeler describes the server’s data structures in terms that the
Enterprise Objects Framework can understand. Note that if you’re
working with a data store other than a database, you must create your
own data structures to map the server’s data to your enterprise objects.

This chapter presents the E-R terms and concepts as they are used
by the Framework. For instructions on putting these concepts into
practice, see the book Enterprise Objects Framework Tools and Techniques.

Modeling Objects

In an Entity-Relationship model, distinguishable things are known
as entities, each entity is defined by its component attributes, and the
affiliations, or relationships, between entities are identified (together,
attributes and relationships are known as properties). From these three
simple modeling objects, arbitrarily complex systems can be modeled.
For instance, a company’s customer base, a library of books, or a
network of computers can all be depicted as E-R models. If the parts
of a system can be identified, the system can be expressed as an
E-R model.
259

Appendix Entity-Relationship Modeling
Pure Entity-Relationship modeling is independent of native database
architecture. Theoretically, an E-R model can be implemented as a
relational database, an object-oriented database, a file system, or any
other data storage system. In practice, E-R modeling fits most naturally
with relational databases; in other words, with databases that store data in
two-dimensional tables. The examples and illustrations in this chapter
follow this lead by posing a hypothetical relational database server from
which data is drawn.

Entities and Attributes

Entities and attributes represent structures that contain data. In a
relational database, entities represent tables; an entity’s attributes
represent the table’s columns. A sample table that could be represented
by an Employee entity is shown below:

Figure 53. The “EMPLOYEE” Table

EMPLOYEE

LAST_NAME

James

Kai

Jane

John

Ken

Mark

John

Mark

Yoshinori

George

Cary

415-023-7265

415-023-2611

415-028-4407

415-322-2815

415-021-3718

415-012-3456

415-022-3100

415-026-4605

415-033-3333

Winton

Veasey

MacAskill

Maselli

Lunau

Windgate

DeKeyser

Kanzaki

Kallimani

Fisk

Davidson

 PHONE FIRST_NAME
260

Entities and Attributes
Each row in the table can be thought of as an “instance of an entity.”
Thus, an employee record is called an instance of the Employee entity.
In the Enterprise Objects Framework, each instance of an entity typically
maps to one enterprise object.

Contained within an entity is a list of features, or attributes, of the thing
that’s being modeled. The Employee entity would contain attributes such
as the employee’s last name, first name, phone number, and so on. This
simple model is depicted in Figure 54.

Figure 54. The Employee Entity

In traditional E-R modeling, each entity represents all or part of one
database table. The Enterprise Objects Framework allows you to go
beyond this, however, by adding attributes to an entity that actually
reflect data in other, related tables (the process of adding attributes from
other entities is known as flattening). An entity in the Framework is
analogous to a database view; in a sense it’s a virtual table that maps to one
or more real database tables.

Entities can also have derived attributes, which do not correspond directly
to any of the columns in a database table. Frequently, these are computed
from one or more attributes. For instance, a derived attribute could be
used to automatically compute an employee’s annual salary by
multiplying his monthly salary (obtained from a simple monthly salary
attribute) by twelve.

Enterprise objects are based on entities. Typically, each of an entity’s
properties are represented in the enterprise object as instance variables
(although this is not a requirement). Enterprise objects can have instance
variables that do not correspond to any of the entity’s properties.

lastName

firstName

phone

entity

attributes

Employee
261

Appendix Entity-Relationship Modeling
Names and the Data Dictionary
The table and column names shown in Figure 54 are the names that
a hypothetical server might use. The collection of a server’s table and
column names is called its data dictionary. In your application, you can’t
refer directly to items in the server’s data dictionary. To identify the
server’s “EMPLOYEE” table, for example, you must refer to the
entity that represents the table—in other words, the Employee entity.
The correspondence between the server’s names and the names of the
modeling objects that you create isn’t coincidental; you have to tell each
modeling object which data dictionary name it represents. This is done as
you create the model.

Server names (in other words, names in a server’s data dictionary) can
be case-insensitive (depending on the database server). The names
of modeling objects, on the other hand, are always case-sensitive.
Throughout this chapter (and the rest of this manual) modeling objects
are given names that match, except for case, the corresponding dictionary
names (given the hypothetical relational database server that’s used in the
examples). To further distinguish the two, server names are uppercase
and quoted—for example, the “EMPLOYEE” table—while modeling
object names use a different font: AnEntity , anAttribute , aRelationship .
Note that entity names are capitalized like class names, while attribute
and relationship names are lowercase with intervening capital letters.
Attributes are occasionally identified by their definition, with the entity
and attribute names connected by a period: AnEntity.anAttribute .

Attribute Data
When you use an attribute to identify a particular datum in a table,
you refer to the value for that attribute, given a particular record.
An employee’s phone number, for example, is the value for the
Employee.phone attribute. The “value for an attribute” construction
enforces the notion that the attribute itself doesn’t contain data.

Not every employee will necessarily have a phone number. If a record’s
value for a particular attribute can’t be determined (or doesn’t exist),
the value is said to be NULL.
262

Entities and Attributes
Data Types
Every database attribute is assigned a data type (such as int , String , and so
on). All values for a particular attribute take the data type of that attribute.
In other words, the values in a particular column are all of the same type.
When an enterprise object is fetched from the database, the value for
each attribute is converted from its external data type into a suitable scalar
or value class type that can be used by the enterprise object. For example,
a Sybase varchar would become a java.lang.String (or NSString in
Objective-C) in an enterprise object.

None of the candidate data types allow lists of data; the value for a
particular attribute in a particular record must be a single datum. Thus, in
addition to indicating that an employee has a last name, a first name, and
a phone number, the diagram in Figure 54 indicates that every employee
has a single last name, a single first name, and a single phone number (where
any of these single values can be NULL). This “atomic attribute rule”
will become particularly important in the discussion of relationships, later
in this chapter.

Attribute Types
An attribute may be simple, derived, or flattened. A simple attribute
corresponds to a single column in the database, and may be read or
updated directly from or to the database.

A derived attribute doesn't correspond to a single database column and is
usually based on some other attribute, which is modified in some way. For
example, if an Employee entity has a simple monthly salary attribute, you
could define a derived annualSalary attribute as “salary * 12”. Derived
attributes, since they don’t correspond to real values in the database, are
effectively read-only; it makes no sense to write a derived value.

A flattened attribute (which, in the Enterprise Objects Framework, is
a special type of derived attribute) is actually an attribute of some other
entity reached through a relationship. A flattened attribute's definition
consists of one or more relationships separated by periods, ending
in an attribute name. For example, if the Employee entity has the
relationship toDepartment and the Department entity has the attribute
departmentName , you can define employeeDeptName as an attribute
of your Employee entity by creating an attribute for it with a definition
of “toDepartment.departmentName ”.
263

Appendix Entity-Relationship Modeling
The Primary Key
Each of the records in a table must be unique—no two records can
contain exactly the same values. To ensure this, each entity must contain
an attribute that’s guaranteed to represent a unique value for each record.
This attribute is called the entity’s primary key.

The Employee entity, as defined above, doesn’t contain a primary key.
If the company were to hire two employees with the same name, the
records for those two employees wouldn’t be distinguishable from each
other. To amend this, a primary key called empID—an attribute for which
each distinct employee has a unique value—is added to the Employee
entity. Figure 55 shows the amended entity; the primary key is marked
with a key symbol.

Figure 55. The Employee Entity with a Primary Key

The value for a primary key may or may not represent a real-world value.
The empID attribute used above may, for instance, contain the
employee’s social security number. Or, it may just contain an arbitrary
value used only to distinguish a particular record from other
employee records.

An entity can contain any number of attributes that represent unique
data, but only one of them needs to be declared as a primary key.
Declaring more than one as a primary key creates a compound primary key.

Compound Primary Keys
Typically, the primary key for an entity is a single attribute. However, you
can designate a combination of attributes as a compound primary key. In a
compound primary key, the value for any one of the constituent attributes
isn’t necessarily unique, but the combination of all of them is.

lastName
firstName
phone
empID primary key

Employee
264

Relationships
For example, consider employee time cards. Every time card could be
uniquely identified through a combination of its employee number and
an additional time card number (to distinguish multiple cards for the
same employee). Taken on their own, neither of these numbers is
necessarily unique for all time cards, but the combination of the two is.
Figure 56 illustrates a TimeCard entity in which the attributes empID and
timeCardID form a compound primary key.

Figure 56. An Entity with a Compound Primary Key

Relationships

Your employee database might have, in addition to the Employee entity,
a JobTitle entity that identifies the various job titles that an employee can
have and whether each title represents a salaried or an hourly position.
A relationship between the Employee entity and the JobTitle entity
expresses the affinity between employees and titles, and allows you
to access the title information for a given employee. Graphically, a
relationship can be shown as a named arrow that points from one entity
(the source entity) to another (the destination entity); the Employee-JobTitle
relationship (which is named toJobTitle) is depicted in Figure 57.

Note: To support the toJobTitle relationship, the Employee entity has
been altered—the titleID attribute has been added to it. This is
explained in the section “Relationship Keys” on page 267.

The table that’s represented by the source entity is referred to as the
source table; the source table contains source records. Similarly, the table
that’s represented by the destination entity is referred to as the destination
table; it contains destination records.

TimeCard

endTime
startTime
summary
emplD
timeCardID
265

Appendix Entity-Relationship Modeling
Be aware that you can’t just randomly create relationships between your
entities. Relationships that you add to your entities must reflect real
relationships between the tables in the database. For more information,
see the section “Relationship Keys” on page 267.

Figure 57. The toJobTitle Relationship

Relationship Directionality
Relationships are unidirectional. In a unidirectional relationship, the
path that leads from the source to the destination can’t be traveled
in the opposite direction—you can’t use a relationship to go from
the destination to the source. For example, although you can use
the toJobTitle relationship to find the title for a particular employee,
you can’t use it to get a list of the employees that share a particular title.

Unidirectionality is enforced by the way a relationship is resolved.
Specifically, the source record is a given. Resolving a relationship means
finding the correct destination record (or records) given a specific source
record.

Bidirectional relationships—in which you can look up records in either
direction—can be created by adding a separate “return-trip” relationship.
This is demonstrated in the section “Bidirectional Relationships” on
page 272.

Naming Relationships
Most of the relationships described in this manual use a simple naming
convention: relationships are named after the destination entity. For
example, a Movie entity can have a studio relationship to a Studio entity,
and a roles relationship to a MovieRoles entity. Note that singular names
are typically used for to-one relationships, and plural names are used for

Employee

lastName
firstName
phone
emplD
titleID

JobTitle

title
titleType
titlelD

source
entity

source
key

destination
entity

destination
key

toJobTitle
266

Relationships
to-many relationships. However, you’re not bound by this convention—
EOModeler lets you give relationships any names you like.

In the figures throughout this book, the entity that is adjacent to the
relationship’s label is said to own the relationship. For example, in
Figure 57 the Employee entity owns the toJobTitle relationship, as
indicated by the proximity of the “toJobTitle” label to the entity.

Relationships and the Data Dictionary
Unlike entities and attributes, relationships don’t correspond to names
in the server’s data dictionary. In general, most servers don’t define
structural elements for relationships, so their data dictionaries don’t
contain names to which E-R relationships can correspond. But
relationships aren’t completely disassociated from the data dictionary:
A relationship’s definition, as explained in the next section, depends on
the existence of particular entities and attributes (which, as described
earlier, must correspond to data dictionary names).

Relationship Keys
The construction of a relationship involves more than just two entities.
You also have to designate at least one attribute from each entity as
a relationship key. In the toJobTitle relationship, for instance, the
Employee.titleID and JobTitle.titleID are so designated; this is indicated
in Figure 57 as the two attributes that lie at either end of the relationship
arrow. Just as the tables are called source and destination tables, so are the
relationship keys named. In the source entity, the relationship key is
called the source key. The destination entity’s relationship key is called
the destination key.

Note: As in the case of the toJobTitle relationship, the source and
destination keys often have the same name, although this isn’t a
requirement of model design.

The reason you need to designate relationship keys is so the relationship
can be used to create cross-references between specific instances of the
related entities (this is called “resolving” the relationship). For example,
let’s say you fetch an employee object. The Enterprise Objects
Framework takes the value for the employee’s titleID attribute and
267

Appendix Entity-Relationship Modeling
compares it to the value for titleID in each JobTitle instance. A match
locates the desired job title record.

For this cross-referencing scheme to work, the source and destination
keys must characterize the same data—you couldn’t find an employee’s
job title by comparing, for example, Employee.empID to JobTitle.titleID .
This is why the titleID attribute was added to the Employee entity.

An Example with Data
To further illustrate how a relationship is resolved, consider the
“EMPLOYEE” and “JOB_TITLE” tables presented in Figure 58 (for
the purpose of this example, only the essential columns are shown).

Here we see that the value for the titleID attribute for James Winton is 1.
Looking in the “JOB_TITLE” table, we see that 1 is the ID of the
President. Thus, James Winton is the company president. Similarly, we
can determine that Kai Veasey is a manager.

Figure 58. The “EMPLOYEE” and “JOB_TITLE” Tables

LAST_NAME

1

3

7

5

4

4

7

6

4

6

4

James

Kai

Jane

John

Ken

Mark

John

Mark

Yoshinori

George

Cary

Winton

Veasey

MacAskill

Maselli

Lunau

Windgate

DeKeyser

Kanzaki

Kallimani

Fisk

Davidson

JOB_TITLEEMPLOYEE

TITLE

President

Vice President

Manager

Engineer

Designer

Sales Representative

Administrator

1

2

3

4

5

6

7

TITLE_ID FIRST_NAME TITLE_ID
268

Relationships
Choosing Relationship Keys
Any attribute can be used as a relationship key, but some are better suited
than others. In general, of the two relationship keys for a particular
relationship, the destination key will be a primary key for its entity (or,
otherwise, an attribute that characterizes unique data) and the source key
is manufactured to emulate the destination key. In traditional E-R
modeling, the emulating attribute is called a foreign key. The toJobTitle
relationship demonstrates this: The destination key in the JobTitle entity
is titleID , the primary key for that entity. The titleID attribute is added to
Employee as foreign key.

Note that if empID had been used as the relationship key for the
toJobTitle relationship, a given title could only be assigned to a single
employee.

Compound Relationship Keys
A relationship’s keys needn’t be single attributes from the related
entities; any number of attributes can be paired as relationship keys
within the same relationship to form a compound relationship key.
A relationship that designates more than one pair of keys is called
a compound relationship.

For example, consider an entity (empPhoto) containing the employee’s
picture that uses the attributes firstName and lastName as a compound
relationship key. (Using people’s names for unique identification is
generally a bad idea, but it serves the purpose for illustration. In actual
practice, this relationship would likely use empID as its relationship key.)
This relationship is depicted in Figure 59.

Figure 59. A Compound Relationship

lastName
firstName
phone
emplD
titleID

photo
firstName
lastName

toEmpPhoto

EmpPhotoEmployee
269

Appendix Entity-Relationship Modeling
The algorithm used to resolve a compound relationship is similar to that
for a simple relationship. The only difference is the number of pairs of
relationship key values that are compared. For two records to correspond,
all of the comparisons must be successful.

Note: The keys in a compound relationship can be a combination of
any attributes—not just a compound primary key (or foreign keys to
a compound primary key). Conversely, you can use a single attribute
from a compound primary key as a relationship key in a simple
(non-compound) relationship.

Joins
Relationships are made up of source-destination key pairs. A join is the
pairing of one source attribute and one destination attribute for purposes
of establishing a relationship. Thus, simple relationships consist of one
join. Compound relationships are composed of two or more joins. In
Figure 59, for example, the toEmpPhoto relationship is composed of two
joins: one linking Employee.lastName to EmpPhoto.lastName , and one
linking Employee.firstName to EmpPhoto.firstName .

The Enterprise Objects Framework requires you to declare the join in a
relationship as either an inner join, a right outer join, a left outer join, or a full
outer join. These four join semantics are defined as follows:

• In an inner join, if a destination record can’t be found for a given
source record, that source record isn’t included in the result of the
join. Destination records that don’t match up to any records in the
source table are not included in the result of an inner join, either.

• In a right outer join, destination records for which no source record
can be found are included, but not the reverse.

• In a left outer join, source records for which no destination record
can be found are included, but not the reverse.

• In a full outer join, all source records from both tables are included
in the result of the join.
270

Relationships
Relationship Cardinality
Every relationship has a cardinality; the cardinality tells you how many
destination records can (potentially) resolve the relationship. The
Enterprise Objects Framework defines two cardinalities, to-one and
to-many:

• In a to-one relationship, for each source record there’s exactly one
corresponding destination record.

• In a to-many relationship, for each source record there may be zero,
one, or more corresponding destination records.

The toJobTitle relationship is an example of a to-one relationship:
An employee can only have one title. The converse relationship, from
JobTitle to Employee , would be to-many: a single title can be shared by
more than one employee, or there may be no employees with a given
title. This relationship, which is owned by JobTitle and called
toEmployee , is shown in Figure 60 (for clarity, the source and destination
components are pointed out). That the relationship is to-many is
indicated by the double arrowhead.

Notice that the relationship keys for the toEmployee relationship are
the same as for toJobTitle . However, the source and destination key
assignments are reversed. In other words, whereas Employee.titleID is
the source key for the toJobTitle relationship, it’s the destination key for
toEmployee ; similarly, JobTitle.titleID changes destination and source key
roles between the two relationships.

This switch does more than demonstrate that the same attributes
can be used as relationship keys in more than one relationship; it also
exemplifies the typical orientation of the primary key with regard to
the relationship keys in to-one and to-many relationships:

• In a to-one relationship, the destination key is always the primary
key for its entity.

• In a to-many relationship, the source key is usually a primary key.
271

Appendix Entity-Relationship Modeling
Figure 60. A To-Many Relationship

Bidirectional Relationships
Since relationships, as defined by the Enterprise Objects Framework,
are unidirectional, it’s natural to assume that to simulate a bidirectional
relationship—in other words, to express the natural relationship between
two entities without regard for direction—all you need is two
relationships: One that leads from entity A to entity B, and one that
leads from entity B to entity A. Unfortunately, it isn’t always that easy.

Consider, for example, the actual relationship between employees and
projects. A project can involve many employees, and a single employee
can contribute to more than one project.

Figure 61. The Project Entity

Employee

lastName
firstName
phone
emplD
titleID

JobTitle

title
titleType
titleID

destination
entity

destination
key

source
entity

source
key

toEmployee

Project

projectName
summaryImage
projectID
272

Relationships
Forming a to-many relationship between Employee and Project
(toProject) and a to-many relationship between Project and Employee
(toEmployee) doesn’t work, because it’s impossible to assign relationship
keys that would support this set-up. For example, in the toProject
relationship you can’t use the empID attribute as a source key because
the destination key, Project.empID (added as a foreign key), wouldn’t
be atomic (since a project may consist of more than one employee).
Importing projectID as a foreign key into Employee has the same problem:
The attribute wouldn’t be atomic (since an employee may be involved
with more than one project).

The most common way to establish this “many-to-many” relationship
(as it’s called in traditional E-R modeling) is to insert an auxiliary entity
between Employee and Project , and form a network of relationships to
and from it. This is depicted in Figure 62.

Figure 62. A Many-to-Many Relationship

The compound primary key used in EmpProject indicates that the entity
characterizes unique combinations of employees and projects. The table
that the entity represents would hold a different record for each employee
of every project. For example, if three employees were involved with a
single project, there would be three EmpProject instances with the same
value for the projectID attribute, but each record would have a different
value for its empID attribute.

Employee

lastName
firstName
emplD
titleID

toEmployee

toEmpProject

EmpProject

emplID
projectID

toProject

Project

projectName
summary
projectID

toEmpProject
273

Appendix Entity-Relationship Modeling
The Tables Behind the Many-to-Many Model
To better understand how the many-to-many model works, it helps to see
an example of the tables that store the data. Sample “EMPLOYEE” and
“PROJECT” tables that are filled with this information are shown in
Figure 63 (for clarity, only relevant attributes are shown).

Figure 63. “EMPLOYEE” and “PROJECT” Tables

The “EMP_PROJECT” table is shown in Figure 64 (for clarity, the last
names and project names are shown in the margins).

EMPLOYEE PROJECT

 LAST_NAME

James

Kai

Jane

John

Ken

John

Mark

Mark

Yoshinori

George

Cary

101

102

103

106

107

108

109

112

116

134

137

Winton

Veasey

MacAskill

Maselli

Lunau

DeKeyser

Windgate

Kanzaki

Kallimani

Fisk

Davidson

503

507

510

 PROJECT_NAME

Info Environment

Net DesignWorks

Info Vault

EMP_ID PROJECT_IDFIRST_NAME
274

Relationships
Figure 64. The “EMP_PROJECT” Table

As expected, some values appear more than once for the empID attribute;
similarly, some values for projectID are repeated. But since empID and
projectID form a compound primary key for the EmpProject entity, no two
records may possess the same combination of values for these two
attributes. This fact—that no two records can have the same empID and
the same ProjectID—signifies that a given employee cannot be assigned
to a single project more than once.

EMP_PROJECT

EMP_ID

Winton

Veasey

Veasey

MacAskill

Maselli

Maselli

Lunau

Windgate

DeKeyser

Kanzaki

Kallimani

Kallimani

Fisk

Davidson

Net DesignWorks

Info Environment

Info Vault

Net DesignWorks

Net DesignWorks

Info Environment

Info Vault

Info Vault

Info Environment

Net DesignWorks

Info Environment

Info Vault

Net Designworks

Info Vault

EMP_PROJECT

101

102

102

103

106

106

107

109

108

112

116

116

134

137

507

503

510

507

507

503

510

510

503

507

503

510

507

510

PROJECT_ID
275

Appendix Entity-Relationship Modeling
Reflexive Relationships
The source and destination entities in a relationship needn’t be different.
Where the entities in a relationship are the same, a reflexive relationship is
created. Reflexive relationships are important in characterizing a system
in which an instance of an entity points to another instance of the same
entity.

For example, to show who a given employee reports to, you could create
a separate Manager entity. It would be easier, however, to just create a
reflexive relationship, as shown in Figure 65.

Figure 65. A Reflexive Relationship

Note: The name of the relationship, managerOf , doesn’t follow the
relationship naming convention suggested earlier in this chapter.
However, it follows from the meaning of the relationship, and meaning
takes precedence over form.

The managerID attribute acts as the relationship’s source key; empID is
the destination key. Where an employee’s managerID matches another
employee’s empID , the first employee reports to the second. If an
employee doesn’t have a manager, the value for the managerID attribute
is NULL in that employee’s record.

Reflexive relationships can represent arbitrarily deep recursions. Thus,
from the model above, an employee can report to another employee who
reports to yet another employee, and so on. This could go on until an
employee who’s managerID is NULL is reached, denoting an employee
who reports to no one (probably the company president!).

Employee

lastName
firstName
phone
emplD
titleID
managerID

managerOf
276

Relationships
Flattened Attributes
At the beginning of this chapter, it was stated that an entity maps to
a table in the database. This is not strictly true, however, because the
Enterprise Objects Framework allows you to add flattened attributes
(and flattened relationships) to your entity, effectively extending the
entity’s mapping to more than one table in a database.

A flattened attribute is an attribute that you effectively add from one
entity to another by traversing a relationship. You can’t add arbitrary
attributes from various entities, however. To add an attribute from one
entity to another, there must be a to-one relationship between those
entities.

For example, by traversing the toJobTitle relationship, you can determine
a given employee’s title. If you add the title attribute from the JobTitle
entity to the Employee entity as a flattened attribute, the Enterprise
Objects Framework will automatically traverse the relationship and
locate the employee’s title when the employee is fetched from the
database.

To your code, the flattened attribute looks like any other. After adding the
title attribute to the Employee entity as a flattened attribute (which has no
effect on the “EMPLOYEE” table in the database), for instance, your
application’s view of the Employee table would look like Figure 66:
277

Appendix Entity-Relationship Modeling
Figure 66. A View of the “EMPLOYEE” Table After Adding a Flattened Attribute

You are not limited to flattening attributes across a single relationship; any
number of relationship traversals can be employed. Thus, if there was a
relationship between the JobTitle entity and a SalaryRange entity, you
could include an employee’s maximum salary with the rest of the
employee information by flattening a
toJobTitle.toSalaryRange.maxSalary attribute into the Employee entity.

Flattened Relationships
Just as you can flatten an attribute to add it to another entity, so can you
flatten a relationship. This gives a source entity access to relationships
that a destination entity has with other entities. It is equivalent to
performing a multi-table join.

EMPLOYEE

LAST_NAME

Winton

Veasey

MacAskill

Maselli

Lunau

Windgate

DeKeyser

Kanzaki

Kallimani

Fisk

Davidson

James

Kai

Jane

John

Ken

Mark

John

Mark

Yoshinori

George

Cary

President

Manager

Administrator

Designer

Engineer

Engineer

Administrator

Sales Representative

Engineer

Sales Representative

Engineer

JOB_TITLEFIRST_NAME
278

Relationships
As an example, suppose you need department information for corporate
assets that are assigned to employees, using the entities and relationships
shown in Figure 67. One way to obtain the needed information is to
flatten the relevant attributes (deptName and location , perhaps) across the
toEmployee and toDepartment relationships. A simpler way would be to
flatten the toDepartment relationship itself, so that it appears to your code
as if the Department entity is a part of the Equipment entity.

Figure 67. Equipment Allocated by Department

Figure 68 shows how the Equipment entity might look after the flattened
relationship had been added. In it, toDepartment is a relationship defined
as toEmployee.toDepartment . When your code asks an Equipment object
for the value of its toDepartment property, it receives the corresponding
Department object. Your code can then query the Department object for
the needed properties.

Figure 68. A Flattened Relationship

While the entities involved in a flattened relationship must be related,
those relationships can either be to-one or to-many. If any of the
relationships are to-many and your code requests the value for a flattened
relationship, it will receive an array of objects corresponding to the
flattened relationship’s destination entity.

Equipment

serialNumber
emplD
description

Employee

lastName
firstName
phone
emplD
deptID

Department

deptName
location
deptIDtoEmployee

toDepartment

Equipment

serialNumber
empID
description
toDepartment
279

Index

Index
A
access layer 46
accessor methods

cautions in implementing 102
writing 78

adaptor level 47
adaptors

connection dictionary See
connection dictionaries

login panel See login panels
adaptorWithModel 177
adaptorWithModel: 177
adaptorWithName 177
adaptorWithName: 177
addCooperatingObjectStore 158
addCooperatingObjectStore: 158
addObject:toBothSidesOfRelationshipWithKey:

 96
addObject:toPropertyWithKey: 97
addObjectToBothSidesOfRelationshipWithKey

96
addObjectToPropertyWithKey 97
applications with graphical user

interfaces
automatic creation of

EODatabaseChannels in 157
automatic creation of

EODatabaseContexts in 147
automatic creation of Framework

objects in 145–152
creating multiple

EOObjectStoreCoordinators
in 167

nesting EOEditingContexts in 163
sharing EOEditingContexts across

nibs in 160
typical configuration of 143

applications without graphical user
interfaces

automatic creation of
EODatabaseChannels in 157

automatic creation of
EODatabaseContexts in 156

automatic creation of Framework
objects in 153–158

creating multiple
EOObjectStoreCoordinators
in 167

typical configuration of 153
assertConnectionDictionaryIsValid 179
assignGloballyUniqueBytes

 230
associations 54
attributes 259, 260

as relationship keys 269
complex 107–113
custom data types for 111–113
data types for 107, 263
derived 263
flattened 69, 74, 261, 263, 277
flattening 227
image 110–111
joins and 270
making class properties out of 69
mappings for 107
NULL values for 262
primary key and 264
RTF text 108–109
simple 263
types of 263
values for 262

awakeFromFetch 197
awakeFromFetchInEditingContext: 99, 197
awakeFromInsertion 99
awakeFromInsertionInEditingContext: 99

B
batch faulting 225
BigDecimal 71
BLOB types

working with 228
business logic

adding to enterprise objects 100

C
cascade delete rule 73
change notification

and EOGenericRecord 81
in enterprise objects 80

changes
saving 212

class properties
deciding which attributes to

include as 69
of an enterprise object 261

classForObjectWithGlobalID 134
closeChannel 183
columns

database table 260
commitChanges 215
connection dictionaries 176

setting from a model 177
setting from login panels 177
setting programmatically 179

connectionDictionary 180
correlation tables 69, 122
createInstanceWithEditingContext 95, 196
createInstanceWithEditingContext:globalID:

zone: 95, 196
custom enterprise object classes

deciding when to implement 68

D
data dictionaries 262

relationships in 267
data sources

defined 54
data types

and class properties 70
custom 111–113

database connections 175
closing 182
limiting 180

database level 47, 48
snapshots at 48

database tables
attributes and 261
column names in 262
columns in 260
correspondence to entities 261
naming 262
rows in 261
283

Index
databaseContext:failedToFetchObject:globalID:
 118, 121

databaseContext:newPrimaryKeyForObject:
entity: 78

databaseContext:willRunLoginPanelToOpen
DatabaseChannel: 179

databaseContextFailedToFetchObject 118,
121

databaseContextNewPrimaryKey 78
databaseContextWillRunLoginPanelToOpen

DatabaseChannel 179
databases

integrity-checking features in 238
logging in to 176–180
mapping to modeling objects 50
ordering operations in 248
representing 261
working with multiple 168

default values
setting for enterprise objects 98

defaultCoordinator 147, 154, 155
defaultGroup 147
defaultParentObjectStore 147
delete rules

cascade 73
deny 73
for relationships 73
nullify 73

deny delete rule 73
derived attributes 263
destination key 267
display groups

in nib files 145
in WebObjects components 145

E
editingContextWillSaveChanges 213
enterprise objects

change notification in 80
class properties of 261
creating and inserting 93
data types for 70
database-savvy 135–137
deallocation of 250

deciding when to implement
custom classes for 68

implementing 75–101
numeric values in 71
ownership of 251
performing validation in 87
primary key generation for 78
relationship properties in 72
setting default values for 98
writing business logic for 100
writing derived methods in 86

entities 259, 260
contents of 261
for multiple databases 277
mapping across multiple tables 74
related 265

entity display groups 145
entity:classForObjectWithGlobalID: 134
entity:relationshipForRow:relationship: 134
Entity-Relationship modeling 259
EODatabaseChannel

automatic creation of 157
role in fetching 195

EODatabaseChannels
using multiple

EODatabaseContexts
with 184

EODatabaseContext
automatic creation of 147, 156
EODatabaseChannels and 157, 184
role in fetching 192

EODatabaseDataSource
automatic creation of

EODatabaseContext and 147
characteristics of 54
EOModelGroup and 147
in nib files 145
in WebObjects components 145
unarchiving from nib files 147

EODisplayGroup
in nib files 145

EOEditingContext
and change management 207–212

assigning
EOObjectStoreCoordinator
to 167

creating 154
EOObjectStoreCoordinator as

parent EOObjectStore of 147
in nib files 145
in WebObjects applications 145
nesting 161–164
role in fetching 196
sharing across multiple nibs 160
substituting in nib loading 160
unarchiving from nib files 147

EOFault 224
EOGenericRecord 68

and change notification 81
creating instances of

programmatically 95
EOGlobalID 52
EOKeyValueCoding 82, 102
EOModel

creating for optimal
performance 227

EOModelGroup
automatic creation of 147
default 147

EOObjectStoreCoordinator
automatic creation of 155
default 147, 154
EODatabaseContext and 156
substituting in nib loading 167
using more than one 165–167

EORelationshipManipulation 96
EOTextAssociation 109
equals 103

F, G
faulting

batch 225
faults 201–207

and uniquing 207
fetch 189
284

Index
fetching
optimizing 224
role of EODatabaseChannel in 195
role of EODatabaseContext in 192
role of EODisplayGroup in 191

fetching objects 189
fetchObject 193, 195–197
fetchObjects 191
fetchRow 246
fetchRowWithZone

 246
flattened attributes 261, 263, 277

to-one relationships and 277
when to use 74

flattened relationships 122, 277, 278
to-many relationships and 279

flattening attributes 227
foreign keys 269

getting values for 254
when to include as class

properties 69
forwardUpdateForObject 214
forwardUpdateForObject:changes: 214

H
horizontal inheritance

mapping 129–130
creating an EOModel for 130

I
images 110–111

displaying in OpenStep
applications 111

displaying in WebObjects
applications 110

inheritance 75, 124–134
and fetching 133
data access patterns for 133
delegation hooks for 134
modeling approaches for ??–126
See also horizontal inheritance

mapping, single table
inheritance mapping, vertical
inheritance mapping

initWithDatabaseContext: 185

initWithEditingContext:classDescription:
globalID: 100, 196

inserting enterprise objects 93
insertObject 93
insertObject: 93
interface layer 54
intermediate tables

See correlation tables
isEqual: 103

J
join tables

See correlation tables
joins 270

multi-table 278

K
key paths 124
keys

compound primary 264, 269, 273
compound relationship 269
destination 267
foreign 269
manufacturing for a

relationship 269
primary 264
relationship 267
source 267

key-value coding 82
and NULL values 102
type conversion in 71

L
locking

on-demand 217
optimistic 217
pessimistic 217
strategies for 217

login panels
running 177
suppressing 178

M
many-to-many relationships 122–124

See also correlation tables
mapping

entity to enterprise object 261
relational database to enterprise

object 259
modeling objects 259

relationship to database
components 50

models 49
defining 68

N
nib files

Enterprise Objects Framework
objects in 145

NSDecimalNumber 71
NSNumber 71
NSTextView 109
nullify delete rule 73
NULLs

and numeric values 102
Number 71
numeric values

conversion of 71

O
object graph 52
objectForGlobalID 195
objectForGlobalID: 195
objects

fetching 189
objectsWithFetchSpecification 191
objectsWithFetchSpecification: 191
on-demand locking 217
openChannel 178
optimistic locking update strategy 217
optionality

in relationships 73
ordering database operations 248
owning relationships 73, 211
285

Index
P, Q
performance

improving 223
performChanges 214
pessimistic locking update

strategy 217
primary key generation 78
primary keys 264

compound 264, 269, 273
example of compound 275
generating 229
relationship key and 269
to-many relationships and 271
to-one relationships and 271
values for 264
when to include as class

properties 69
primaryKeyForNewRowWithEntity 78
primaryKeyForNewRowWithEntity: 78
processRecentChanges 212
propagateDeleteForObject 211
propagateDeleteForObject:editingContext: 211
properties 259

R
recordChangesInEditingContext 214
recordSnapshot:forGlobalID: 195
recordSnapshotForGlobalID 195
referential integrity 73

corrupted databases and 114
registeredDatabaseContextForModel 147,

151, 171
registeredDatabaseContextForModel:editing

Context: 147, 151, 171
relationship keys 267

choosing 269, 273
compound 269
data types for 268
destination 267
naming 267
primary key and 269
source 267

relationshipForRow 134

relationships 259, 265–279
accessing data through 82
as class properties 69
as enterprise object properties 72
bidirectional 272
cardinality of 271
compound 269
creating 266
data dictionary and 267
definition 263
degree of 271
delete rules for 73
directionality 266
entities connected by 265
example of resolving 268
flattened 277, 278
flattened attributes and 263
joins and 270
many-to-many 122–124, 273
non-reciprocal 97
optional to-one 114–122
optionality 73, 114
owner of 267
owning 73, 211
prefetching 226
reciprocal 96
recursive 276
referential integrity for 73
reflexive 276
resolving 266, 267
resolving compound 270
to-many 271
to-one 271

removeObject:fromBothSidesOfRelationship
WithKey: 98

removeObject:fromPropertyWithKey: 98
removeObjectFromBothSidesOfRelationship

WithKey 98
removeObjectFromPropertyWithKey 98
rollbackChanges 215
rows 261
RTF text 108–109

runLoginPanelAndValidateConnection
Dictionary 178

S
saveChanges 212, 213
saveChangesInEditingContext 214
saveChangesInEditingContext: 214
saving changes 212
schema

designing 67
selectObjectsWithFetchSpecification 193
selectObjectsWithFetchSpecification:editing

Context: 193
setConnectionDictionary 179
setConnectionDictionary: 179
setContextClassToRegister 158
setContextClassToRegister: 158
setDefaultParentObjectStore 163, 167
setDefaultParentObjectStore: 163, 167
setIsDeep 133
setIsDeep: 133
setModelGroup 147
setModelGroup: 147
setRestrictingQualifier 134
setRestrictingQualifier: 134
setSubstitutionEditingContext 160
setSubstitutionEditingContext: 160
single table inheritance

mapping 131–132
creating an EOModel for 132

snapshots 48, 201–207
source code

generating for an enterprise object
class 76

source key 267
stored procedures

working with 242–248
subEntityForEntity 134
subEntityForEntity:primaryKey:isFinal: 134

T
takeValue:forKey: 102
takeValueForKey 102
to-many relationships 271
286

Index
example of 271
flattened relationships and 279
primary key and 271

to-one relationships 271
example of 271
flattened attributes and 277
missing destination row and 114
optional 114–122
primary key and 271

U
unableToSetNilForKey: 102
unableToSetNullForKey 102
uniquing 201–207

and faults 207
update strategy

optimistic locking 217
pessimistic locking 217

user input
validating 92

user interface display
updating 228

user interface objects 53
user interfaces

putting validation in 92

V
validateForDelete 87, 212
validateForInsert 87
validateForUpdate 87
validateValue:forKey: 87
validateValueForKey 87
validation

in enterprise objects 87
of user input 92
performing immediately 92

value classes
defined 200

values
data types and 263
for a database column 263
type conversion when fetched 263

varchar
conversion to NSString 263

vertical inheritance mapping 75,
127–128

creating an EOModel for 128

W–Z
willChange 80
WODisplayGroup

in WebObjects components 145
287

	Enterprise Objects Framework Developer’s Guide
	Table of Contents
	Contents
	About This Book

	Introduction
	Enterprise Objects Frameworks Essentials
	What Is Enterprise Objects Framework?
	The Enterprise Objects Framework Difference
	Where Does Business Logic Go?
	What Doesn’t Go in an Enterprise Object

	From Database to Objects
	Uniquing
	Resolution of Relationships and Faulting

	From Objects to Interface
	From Objects to Database
	Validation
	Referential Integrity Enforcement
	Automatic Primary and Foreign Key Generation
	Transaction Management
	Locking

	Ingredients of an Enterprise Objects Framework Application
	Enterprise Objects Framework Layers
	A Command-Line Program
	An Application Kit Client/Server Application
	An HTML WebObjects Application

	Enterprise Objects

	Enterprise Objects Framework Viewed Through Its Classes
	Classes in a Command-Line Program
	The Access Layer
	The Adaptor Level
	The Database Level
	Modeling Classes

	The Control Layer
	Interacting with the Access Layer
	Object Graph Management and Change Tracking

	Classes in an Application Kit Client/Server Application
	User Interface Objects
	The Interface Layer
	Access and Control Layers

	Classes in an HTML WebObjects Application
	Classes in a Web Application with a Java Client
	The Distribution Layer
	Client-Side APIs

	Framework Dependencies

	Enterprise Object Design
	Designing Enterprise Objects
	Designing Your Schema
	Defining the Model
	EOGenericRecord or Custom Class?
	Which Attributes Should Be Class Properties?
	What Data Types Should Your Properties Be?
	Working with Numeric Values
	Conversion of Numeric Values

	How Should Your Enterprise Object Manage Relationships with Other Objects?
	Referential Integrity
	Mapping an Entity Across Multiple Tables

	What about Inheritance?

	Implementing an Enterprise Object
	Generating Source Files
	Superclass
	Instance Variables
	Primary key generation

	Writing Accessor Methods
	Change Notification
	Faulting
	Accessing Data through Relationships
	Accessing an Enterprise Object’s Data

	Writing Derived Methods
	Performing Validation
	Validating Before an Operation
	Validating Individual Properties
	Validating User Input

	Creating and Inserting Objects
	Working with Relationships

	Setting Defaults for New Enterprise Objects
	Initializing Enterprise Objects

	Writing Business Logic

	Gotchas
	Constructor for Creating Enterprise Objects
	Numeric Values and NULL
	Cautions in Implementing Accessor Methods
	Don’t Override equals

	Advanced Enterprise Object Modeling
	Modeling Complex Attributes
	RTF Text
	Images
	Custom Data Types

	Modeling Relationships
	Modeling Optional To-One Relationships
	Use a Mandatory To-One Relationship
	Use a To-Many Relationship
	Handle the Exception
	Implement databaseContextFailedToFetchObject

	Modeling Many-To-Many Relationships

	Modeling Inheritance
	Types of Inheritance
	Vertical Mapping
	Creating an EOModel for Vertical Mapping
	Advantages
	Disadvantages

	Horizontal Mapping
	Creating an EOModel for Horizontal Mapping
	Advantages
	Disadvantages

	Single Table Mapping
	Creating an EOModel for Single Table Mapping
	Advantages
	Disadvantages

	Data Access Patterns for Inheritance
	Fetching and Inheritance
	Delegation Hooks for Optimizing Inheritance
	Java Limitation With Ambiguous To-One Relationships

	Designing Database-Savvy Enterprise Objects

	Application Design
	Application Configurations
	Graphical User Interface Applications
	Loading a User Interface
	Unarchiving an Editing Context
	Unarchiving a Database Data Source
	Sharing Editing Contexts and Coordinators
	Database Context Rendezvousing
	Setting Up Channels

	Non-Graphical User Interface Applications
	Creating an Editing Context
	Inside�EOObjectStoreCoordinator
	Inside�EODatabaseContext
	Substituting a Custom EOCooperatingObjectStore

	Editing Context Configurations
	Using One Editing Context for Multiple Nibs
	Using Nested Editing Contexts

	Object Store Coordinator Configurations
	Setting Up Multiple Coordinators Programmatically
	Setting Up Multiple Coordinators Using Nibs

	Accessing Multiple Databases
	Getting By Without Two-Phase Commit
	Preventing Database Context Rendezvousing

	Connecting to a Database
	When Database Connections Are Opened and Closed
	Logging into a Database
	Storing the Connection Information in a Model File
	Storing Partial Information in a Model File

	Running the Adaptor’s Login Panel
	Suppressing the Login Panel

	Setting the Connection Dictionary Programmatically
	Getting Partial Information from a Model File

	Limiting the Number of Database Connections
	Closing Database Connections

	Using Multiple EODatabaseChannels
	Character Encodings
	Choosing an Encoding
	Setting an Adaptor’s Character Encoding
	Setting the Database Character Encoding

	Behind the Scenes
	Fetching Objects
	EODisplayGroup Receives a fetch Message
	Inside EODatabaseContext
	Customizing Framework Behavior

	Inside EODatabaseChannel
	Customizing Framework Behavior

	Flow of Data During a Fetch
	Uniquing, Snapshots, and Faults
	Uniquing
	Snapshots
	Faults

	How Changes are Distributed and Applied
	Customizing Framework Behavior
	How an EOEditingContext Manages Changes to Its Objects
	How Deleted Objects are Processed

	Saving Changes
	Customizing Framework Behavior
	Locking and Update Strategies
	Handling Conflicts

	Transactions
	Transactions and Optimistic Locking
	Transactions and Pessimistic Locking
	Transactions and On-Demand Locking

	Answers to Common Design Questions
	How Can I Improve Performance?
	Controlling the Number of Objects Fetched
	Faulting
	Batch Faulting
	Prefetching Relationships

	Caching an Entity’s Objects
	Creating an EOModel for Optimal Performance
	Avoid Flattening Attributes
	Use Inheritance Wisely
	Don’t Use BLOB Attributes For Locking

	Updating the User Interface Display

	How Do I Generate Primary Keys?
	Defining a Primary Key
	Generating Primary Key Values
	When the Enterprise Object Provides the Key
	When the EODatabaseContext Delegate Provides the Key
	When a Database Stored Procedure Provides the Key
	When the Adaptor Provides the Key

	Why Can’t I Use Identity Columns?
	Why is EOF Generating Primary Key Values for Number Objects Set to Zero?
	Summary

	How Do I Use My Database Server’s Integrity-Checking Features?
	Defaults
	Rules That Validate Values
	Constraints for Enforcing Relational Integrity Rules

	How Do I Invoke a Stored Procedure?
	Invoking a Stored Procedure Automatically
	Requirements for Framework-Invoked Stored Procedures

	Invoking a Stored Procedure Explicitly

	How Do I Order Database Operations?
	How Are Enterprise Objects Cleaned Up?
	Who Owns an Enterprise Object?
	How Does an Enterprise Object Get Deallocated?
	How Are an Object’s Snapshots Deallocated?
	What Happens If You Have Retain Cycles?
	invalidateObjectsWhenFreed
	invalidateAllObjects

	Should I Make Foreign Key Attributes Class Properties?
	How Do I Share Models Across Applications?
	Modeling Objects
	Entities and Attributes
	Names and the Data Dictionary
	Attribute Data
	Data Types
	Attribute Types

	The Primary Key
	Compound Primary Keys

	Relationships
	Relationship Directionality
	Naming Relationships
	Relationships and the Data Dictionary

	Relationship Keys
	An Example with Data
	Choosing Relationship Keys
	Compound Relationship Keys
	Joins

	Relationship Cardinality
	Bidirectional Relationships
	The Tables Behind the Many-to-Many Model

	Reflexive Relationships
	Flattened Attributes
	Flattened Relationships

	Entity-Relationship Modeling
	Index

